Spelling suggestions: "subject:"stereoselective"" "subject:"stereoselektive""
1 |
Trisubstituted Alkenes through Stereoretentive Cross-Metathesis for Natural Product Synthesis:Köngeter, Tobias Peter January 2022 (has links)
Thesis advisor: Amir H. Hoveyda / Chapter One: Stereoretentive Cross-Metathesis of Trisubstituted Olefins
The development of stereoretentive olefin metathesis catalysts has solved a long-standing problem in the field, allowing for trisubstituted alkenes to be synthesized in high stereochemical purity and under kinetic control. E- as well as Z-isomers of trisubstituted alkenyl halides, nitriles, and allylic alcohols can be accessed through cross-metathesis of commercially available and easily accessible alkenes. Through the use of the same strategy, macrocyclic trisubstituted alkenes have been accessed in either isomeric form through stereoretentive ring-closing metathesis of the corresponding diene starting materials. Thus, for the first time, a wide range of E- and Z-trisubstituted alkenes can be obtained selectively through olefin metathesis, regardless of the underlying thermodynamic preferences.
Chapter Two: Development of Catalytic Stereoretentive Cross-Metathesis of Trisubstituted Alkenyl Bromides
We have introduced a general and widely applicable strategy for the synthesis of E- and Z-trisubstituted alkenyl bromides through cross-metathesis. The reaction is applicable to terminal, disubstituted, and trisubstituted olefins bearing a variety of functional groups including alkenes with α-, or β-branches. The requisite stereodefined cross-partners, E- and Z-2-bromo-2-butene are commercially available and can be synthesized with ease in one step from abundant starting materials. This represents a notable improvement over our previous approach, where the non-halogenated alkene starting material had to be prepared through cross-coupling in high stereochemical purity to ensure high stereoretention in the subsequent cross-metathesis. Catalysts derived from Mo monoaryloxide pyrrolide complexes, some of which are commercially available, are optimal for this transformation. The applicability of the approach is underscored through the formal synthesis of phomactin A with improved overall yield and step count.
Chapter Three: Total Synthesis of Ambrein
We have completed a total synthesis of ambrein, a terpenoid isolated from whale secretion, a much sought perfume ingredient. The approach involved joining two fragments through formation of the central trisubstituted alkene. Our route entailed a sequence of cross-metathesis of alkenyl bromides and cross-coupling, providing access to a previously difficult-to-access trisubstituted olefin with high efficiency and selectivity. One fragment was generated from a readily accessible enantiomerically enriched compound, sclareolide, and the other from inexpensive methylcyclohexenone. The stereogenic center of the latter was established through a NHC-Cu-catalyzed enantioselective allylic substitution, which was followed by differentiation of these alkenes through site-selective epoxidation. The total synthesis is more efficient and offers a more practical route to ambrein.
Chapter Four: Stereoretentive Cross-Metathesis of Trisubstituted α,β-Unsaturated Carbonyl Compounds
We have developed a strategy for the synthesis of Z- and E-Trisubstituted α,β-unsaturated carbonyl compounds through stereoretentive CM involving commercially available or easily accessible alkene substrates. The method is applicable to a variety of α,β-unsaturated esters, thioesters, and acyl fluorides. Furthermore, mono-, di-, and trisubstituted alkenes can be used as starting materials. Transformations may be carried out on gram scale and, in some cases, with commercially available Mo catalysts. The utility of the catalytic approach was highlighted through synthesis of previously accessed intermediates more directly and with improved efficiency. / Thesis (PhD) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
2 |
New Ru-Based Catalysts and Strategies for Kinetically Controlled Stereoselective Olefin Metathesis:Xu, Chaofan January 2020 (has links)
Thesis advisor: Amir H. Hoveyda / Chapter 1. In Situ Methylene Capping: A Key Strategy in Catalytic Stereoretentive Olefin MetathesisA general approach for in situ methylene capping that significantly expands the scope of catalyst-controlled stereoselective olefin metathesis is presented. By incorporation of stereodefined 2-butene as the capping reagent, the catechothiolate Ru complex is enabled to catalyze olefin metathesis reactions of terminal alkenes. Substrates bearing a carboxylic acid, an aldehyde, an aryl substituent, an α substituent were thus converted to the desired products in 47–88% yield and 90:10–98:2 Z:E selectivity. The capping strategy was also applied in ring-closing metathesis reactions leading to 14- to 21-membered macrocyclic alkenes (96:4–98:2 Z:E). The utility of this method was highlighted through synthesis of a platelet aggregate inhibitor and two members of the prostaglandin family compounds by cross-metathesis reaction, as well as a strained 14-membered ring stapled peptide by macrocyclic ring-closing metathesis. Examples of the corresponding E-selective cross-processes are provided as well. Chapter 2. Synthesis of Z- or E-Trisubstituted Allylic Alcohols and Ethers by Kinetically Controlled Catalytic Cross-MetathesisKinetically controlled Ru-catalyzed cross-metathesis reactions that generate Z- or E-trisubstituted alkenes are discussed. Reactions were catalyzed by catechothiolate Ru complex to generate trisubstituted allylic alcohols and ethers in up to 81% yield and >98% stereoisomeric purity. The approach is applicable to synthesis of products containing an alcohol, an aldehyde, a carboxylic acid or an alkenyl substituent. Mechanistic models that account for the observed trends in efficiency and stereoselectivity will be provided. Chapter 3. A New Ru-Based Catechothiolate Complex Bearing an Unsaturated NHC Ligand for Synthesis of Z-α,β-Unsaturated Carbonyl Compounds by Cross Metathesis Design and development of a new Ru catechothiolate complex that may be used to promote Z-selective cross-metathesis transformations that afford Z-α,β-unsaturated esters, acids, and amides (including Weinweb amides) are discussed. Comparison between Ru catechothiolate complexes with an unsaturated NHC and a saturated NHC ligand will be provided. Utility of the approach is demonstrated by an eight-step synthesis (15% overall yield) of an intermediate for synthesis of stagonolide E, and a five-step synthesis of a precursor to dihydrocompactin / Thesis (PhD) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
3 |
Synthesis of Trisubstituted α,β-Unsaturated Esters through Catalytic Stereoretentive Cross-Metathesis:Qin, Can January 2021 (has links)
Thesis advisor: Amir H. Hoveyda / We have devised a broadly applicable catalytic cross-metathesis method for stereoretentive synthesis of Z- and E-trisubstituted α,β-unsaturated esters. Several new Mo-bisaryloxide complexes were prepared, and they showed superior efficiency in synthesizing the Z-trisubstituted enoates (vs. corresponding mono-aryloxide pyrrolide complexes). Synthetic utility of the method was demonstrated through several concise syntheses of bioactive triterpenoids and value-added derivatives of prenyl-containing compounds such as citronellal, citronellol, and geraniol, all of which are isolated from essential oils. This transformation offers a valuable alternative to carbonyl olefination approaches such as Wittig and Horner-Wadsworth-Emmons reactions. / Thesis (MS) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
Page generated in 0.0891 seconds