• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Fast Semiautomatic Algorithm for Centerline-Based Vocal Tract Segmentation

Poznyakovskiy, Anton A., Mainka, Alexander, Platzek, Ivan, Mürbe, Dirk 08 June 2016 (has links) (PDF)
Vocal tract morphology is an important factor in voice production. Its analysis has potential implications for educational matters as well as medical issues like voice therapy. The knowledge of the complex adjustments in the spatial geometry of the vocal tract during phonation is still limited. For a major part, this is due to difficulties in acquiring geometry data of the vocal tract in the process of voice production. In this study, a centerline-based segmentation method using active contours was introduced to extract the geometry data of the vocal tract obtained with MRI during sustained vowel phonation. The applied semiautomatic algorithm was found to be time- and interaction-efficient and allowed performing various three-dimensional measurements on the resulting model. The method is suitable for an improved detailed analysis of the vocal tract morphology during speech or singing which might give some insights into the underlying mechanical processes.
2

A Fast Semiautomatic Algorithm for Centerline-Based Vocal Tract Segmentation: Research Article

Poznyakovskiy, Anton A., Mainka, Alexander, Platzek, Ivan, Mürbe, Dirk 08 June 2016 (has links)
Vocal tract morphology is an important factor in voice production. Its analysis has potential implications for educational matters as well as medical issues like voice therapy. The knowledge of the complex adjustments in the spatial geometry of the vocal tract during phonation is still limited. For a major part, this is due to difficulties in acquiring geometry data of the vocal tract in the process of voice production. In this study, a centerline-based segmentation method using active contours was introduced to extract the geometry data of the vocal tract obtained with MRI during sustained vowel phonation. The applied semiautomatic algorithm was found to be time- and interaction-efficient and allowed performing various three-dimensional measurements on the resulting model. The method is suitable for an improved detailed analysis of the vocal tract morphology during speech or singing which might give some insights into the underlying mechanical processes.

Page generated in 0.0537 seconds