• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Martingale Approach to Financial Mathematics

Rowley, Jordan M 01 June 2019 (has links)
In this thesis, we will develop the fundamental properties of financial mathematics, with a focus on establishing meaningful connections between martingale theory, stochastic calculus, and measure-theoretic probability. We first consider a simple binomial model in discrete time, and assume the impossibility of earning a riskless profit, known as arbitrage. Under this no-arbitrage assumption alone, we stumble upon a strange new probability measure Q, according to which every risky asset is expected to grow as though it were a bond. As it turns out, this measure Q also gives the arbitrage-free pricing formula for every asset on our market. In considering a slightly more complicated model over a finite probability space, we see that Q once again makes its appearance. Finally, in the context of continuous time, we build a framework of stochastic calculus to model the trajectories of asset prices on a finite time interval. Under the absence of arbitrage once more, we see that Q makes its return as a Radon-Nikodym derivative of our initial probability measure. Finally, we use the properties of Q and a stochastic differential equation that models the dynamics of the assets of our market, known as the Ito formula, in order to derive the classic Black-Scholes Equation.

Page generated in 0.0663 seconds