1 |
A Variational Approach to Estimating Uncertain Parameters in Elliptic Systemsvan Wyk, Hans-Werner 25 May 2012 (has links)
As simulation plays an increasingly central role in modern science and engineering research, by supplementing experiments, aiding in the prototyping of engineering systems or informing decisions on safety and reliability, the need to quantify uncertainty in model outputs due to uncertainties in the model parameters becomes critical. However, the statistical characterization of the model parameters is rarely known. In this thesis, we propose a variational approach to solve the stochastic inverse problem of obtaining a statistical description of the diffusion coefficient in an elliptic partial differential equation, based noisy measurements of the model output. We formulate the parameter identification problem as an infinite dimensional constrained optimization problem for which we establish existence of minimizers as well as first order necessary conditions. A spectral approximation of the uncertain observations (via a truncated Karhunen-Loeve expansion) allows us to estimate the infinite dimensional problem by a smooth, albeit high dimensional, deterministic optimization problem, the so-called 'finite noise' problem, in the space of functions with bounded mixed derivatives. We prove convergence of 'finite noise' minimizers to the appropriate infinite dimensional ones, and devise a gradient based, as well as a sampling based strategy for locating these numerically. Lastly, we illustrate our methods by means of numerical examples. / Ph. D.
|
2 |
Stochastic collocation methods for aeroelastic system with uncertaintyDeng, Jian 11 1900 (has links)
Computation methods based on the Wiener chaos expansion have been developed to study the behaviors of the aeroelastic system with randomparameters. It is proven that the discrete wavelet transformation is one ofthe most accurate and efficient numerical schemes for this uncertainty quantizationproblem. In this thesis, we propose the stochastic collocation methods(SCM), whichis a type of sampling method combining the strength of the MonteCarlo simulation and the stochastic Galerkin method. The convergence with respect to the number of the nodal points is investigated, and simulation results to aeroelastic models in the presence of uncertainty in the system parameter and due to the initial condition are reported. It is demonstrated that the accuracy of the SCM is comparable to those achieved by using the wavelet chaos expansion. However, the SCM is more straightforward, efficient and easy to implement. / Applied Mathematics
|
3 |
On Stability and Monotonicity Requirements of Finite Difference Approximations of Stochastic Conservation Laws with Random ViscosityPettersson, Per, Doostan, Alireza, Nordström, Jan January 2013 (has links)
The stochastic Galerkin and collocation methods are used to solve an advection-diusion equation with uncertain and spatially varying viscosity. We investigate well-posedness, monotonicity and stability for the extended system resulting from the Galerkin projection of the advection-diusion equation onto the stochastic basis functions. High-order summationby- parts operators and weak imposition of boundary conditions are used to prove stability of the semi-discrete system. It is essential that the eigenvalues of the resulting viscosity matrix of the stochastic Galerkin system are positive and we investigate conditions for this to hold. When the viscosity matrix is diagonalizable, stochastic Galerkin and stochastic collocation are similar in terms of computational cost, and for some cases the accuracy is higher for stochastic Galerkin provided that monotonicity requirements are met. We also investigate the total spatial operator of the semi-discretized system and its impact on the convergence to steadystate
|
4 |
Stochastic collocation methods for aeroelastic system with uncertaintyDeng, Jian Unknown Date
No description available.
|
5 |
Fourierova-Galerkinova metoda pro řešení úloh stochastické homogenizace eliptických parciálních diferenciálních rovnic / Fourier-Galerkin Method for Stochastic Homogenization of Elliptic Partial Differential EquationsVidličková, Eva January 2017 (has links)
This thesis covers the basics in the stochastic homogenization of elliptic partial differential equations, from underlying theory up to numerical ap- proaches. In particular, we introduce and analyze a combination of the Fourier-Galerkin method in the spatial domain with a collocation method in the stochastic domain. The material coefficients are assumed to depend on a finite number of random variables. We present a comparison of the Monte Carlo method with the full tensor grid and sparse grid collocation method for two applications. The first one is the checkerboard problem with continuous random variables, the other considers the material coefficients to be described in terms of an autocorrelation function.
|
6 |
Stochastic analysis of flow and transport in porous mediaVasylkivska, Veronika S. 06 September 2012 (has links)
Random fields are frequently used in computational simulations of real-life processes. In particular, in this work they are used in modeling of flow and transport in porous media. Porous media as they arise in geological formations are intrinsically deterministic but there is significant uncertainty involved in determination of their properties such as permeability, porosity and diffusivity. In many situations description of properties of the porous media is aided by a limited number of observations at fixed points. These observations constrain the randomness of the field and lead to conditional simulations.
In this work we propose a method of simulating the random fields which respect the observed data. An advantage of our method is that in the case that additional data becomes available it can be easily incorporated into subsequent representations. The proposed method is based on infinite series representations of random fields. We
provide truncation error estimates which bound the discrepancy between the truncated series and the random field. We additionally provide the expansions for some processes that have not yet appeared in the literature.
There are several approaches to efficient numerical computations for partial differential equations with random parameters. In this work we compare the solutions of flow and transport equations obtained by conditional simulations with Monte Carlo (MC) and stochastic collocation (SC) methods. Due to its simplicity MC method is one of the most popular methods used for the solution of stochastic equations. However, it is computationally expensive. The SC method is functionally similar to the MC method but it provides the faster convergence of the statistical moments of the solutions through the use of the carefully chosen collocation points at which the flow
and transport equations are solved. We show that for both methods the conditioning on measurements helps to reduce the uncertainty of the solutions of the flow and transport equations. This especially holds in the neighborhood of the conditioning points. Conditioning reduces the variances of solutions helping to quantify the uncertainty in the output of the flow and transport equations. / Graduation date: 2013
|
7 |
Analyse numérique de méthodes performantes pour les EDP stochastiques modélisant l'écoulement et le transport en milieux poreux / Numerical analysis of performant methods for stochastic PDEs modeling flow and transport in porous mediaOumouni, Mestapha 06 June 2013 (has links)
Ce travail présente un développement et une analyse des approches numériques déterministes et probabilistes efficaces pour les équations aux dérivées partielles avec des coefficients et données aléatoires. On s'intéresse au problème d'écoulement stationnaire avec des données aléatoires. Une méthode de projection dans le cas unidimensionnel est présentée, permettant de calculer efficacement la moyenne de la solution. Nous utilisons la méthode de collocation anisotrope des grilles clairsemées. D'abord, un indicateur de l'erreur satisfaisant une borne supérieure de l'erreur est introduit, il permet de calculer les poids d'anisotropie de la méthode. Ensuite, nous démontrons une amélioration de l'erreur a priori de la méthode. Elle confirme l'efficacité de la méthode en comparaison avec Monte-Carlo et elle sera utilisée pour accélérer la méthode par l'extrapolation de Richardson. Nous présentons aussi une analyse numérique d'une méthode probabiliste pour quantifier la migration d'un contaminant dans un milieu aléatoire. Nous considérons le problème d'écoulement couplé avec l'équation d'advection-diffusion, où on s'intéresse à la moyenne de l'extension et de la dispersion du soluté. Le modèle d'écoulement est discrétisée par une méthode des éléments finis mixtes, la concentration du soluté est une densité d'une solution d'une équation différentielle stochastique, qui sera discrétisée par un schéma d'Euler. Enfin, on présente une formule explicite de la dispersion et des estimations de l'erreur a priori optimales. / This work presents a development and an analysis of an effective deterministic and probabilistic approaches for partial differential equation with random coefficients and data. We are interesting in the steady flow equation with stochastic input data. A projection method in the one-dimensional case is presented to compute efficiently the average of the solution. An anisotropic sparse grid collocation method is also used to solve the flow problem. First, we introduce an indicator of the error satisfying an upper bound of the error, it allows us to compute the anisotropy weights of the method. We demonstrate an improvement of the error estimation of the method which confirms the efficiency of the method compared with Monte Carlo and will be used to accelerate the method using the Richardson extrapolation technique. We also present a numerical analysis of one probabilistic method to quantify the migration of a contaminant in random media. We consider the previous flow problem coupled with the advection-diffusion equation, where we are interested in the computation of the mean extension and the mean dispersion of the solute. The flow model is discretized by a mixed finite elements method and the concentration of the solute is a density of a solution of the stochastic differential equation, this latter will be discretized by an Euler scheme. We also present an explicit formula of the dispersion and an optimal a priori error estimates.
|
8 |
Analyse numérique d’équations aux dérivées aléatoires, applications à l’hydrogéologie / Numerical analysis of partial differential equations with random coefficients, applications to hydrogeologyCharrier, Julia 12 July 2011 (has links)
Ce travail présente quelques résultats concernant des méthodes numériques déterministes et probabilistes pour des équations aux dérivées partielles à coefficients aléatoires, avec des applications à l'hydrogéologie. On s'intéresse tout d'abord à l'équation d'écoulement dans un milieu poreux en régime stationnaire avec un coefficient de perméabilité lognormal homogène, incluant le cas d'une fonction de covariance peu régulière. On établit des estimations aux sens fort et faible de l'erreur commise sur la solution en tronquant le développement de Karhunen-Loève du coefficient. Puis on établit des estimations d'erreurs éléments finis dont on déduit une extension de l'estimation d'erreur existante pour la méthode de collocation stochastique, ainsi qu'une estimation d'erreur pour une méthode de Monte-Carlo multi-niveaux. On s'intéresse enfin au couplage de l'équation d'écoulement considérée précédemment avec une équation d'advection-diffusion, dans le cas d'incertitudes importantes et d'une faible longueur de corrélation. On propose l'analyse numérique d'une méthode numérique pour calculer la vitesse moyenne à laquelle la zone contaminée par un polluant s'étend. Il s'agit d'une méthode de Monte-Carlo combinant une méthode d'élements finis pour l'équation d'écoulement et un schéma d'Euler pour l'équation différentielle stochastique associée à l'équation d'advection-diffusion, vue comme une équation de Fokker-Planck. / This work presents some results about probabilistic and deterministic numerical methods for partial differential equations with stochastic coefficients, with applications to hydrogeology. We first consider the steady flow equation in porous media with a homogeneous lognormal permeability coefficient, including the case of a low regularity covariance function. We establish error estimates, both in strong and weak senses, of the error in the solution resulting from the truncature of the Karhunen-Loève expansion of the coefficient. Then we establish finite element error estimates, from which we deduce an extension of the existing error estimate for the stochastic collocation method along with an error estimate for a multilevel Monte-Carlo method. We finally consider the coupling of the previous flow equation with an advection-diffusion equation, in the case when the uncertainty is important and the correlation length is small. We propose the numerical analysis of a numerical method, which aims at computing the mean velocity of the expansion of a pollutant. The method consists in a Monte-Carlo method, combining a finite element method for the flow equation and an Euler scheme for the stochastic differential equation associated to the advection-diffusion equation, seen as a Fokker-Planck equation.
|
Page generated in 0.1405 seconds