• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Computational Methods for Solving High-Dimensional Random Eigenvalue Problems

Yadav, Vaibhav 01 July 2013 (has links)
The primary objective of this study is to develop new computational methods for solving a general random eigenvalue problem (REP) commonly encountered in modeling and simulation of high-dimensional, complex dynamic systems. Four major research directions, all anchored in polynomial dimensional decomposition (PDD), have been defined to meet the objective. They involve: (1) a rigorous comparison of accuracy, efficiency, and convergence properties of the polynomial chaos expansion (PCE) and PDD methods; (2) development of two novel multiplicative PDD methods for addressing multiplicative structures in REPs; (3) development of a new hybrid PDD method to account for the combined effects of the multiplicative and additive structures in REPs; and (4) development of adaptive and sparse algorithms in conjunction with the PDD methods. The major findings are as follows. First, a rigorous comparison of the PCE and PDD methods indicates that the infinite series from the two expansions are equivalent but their truncations endow contrasting dimensional structures, creating significant difference between the two approximations. When the cooperative effects of input variables on an eigenvalue attenuate rapidly or vanish altogether, the PDD approximation commits smaller error than does the PCE approximation for identical expansion orders. Numerical analysis reveal higher convergence rates and significantly higher efficiency of the PDD approximation than the PCE approximation. Second, two novel multiplicative PDD methods, factorized PDD and logarithmic PDD, were developed to exploit the hidden multiplicative structure of an REP, if it exists. Since a multiplicative PDD recycles the same component functions of the additive PDD, no additional cost is incurred. Numerical results show that indeed both the multiplicative PDD methods are capable of effectively utilizing the multiplicative structure of a random response. Third, a new hybrid PDD method was constructed for uncertainty quantification of high-dimensional complex systems. The method is based on a linear combination of an additive and a multiplicative PDD approximation. Numerical results indicate that the univariate hybrid PDD method, which is slightly more expensive than the univariate additive or multiplicative PDD approximations, yields more accurate stochastic solutions than the latter two methods. Last, two novel adaptive-sparse PDD methods were developed that entail global sensitivity analysis for defining the relevant pruning criteria. Compared with the past developments, the adaptive-sparse PDD methods do not require its truncation parameter(s) to be assigned a priori or arbitrarily. Numerical results reveal that an adaptive-sparse PDD method achieves a desired level of accuracy with considerably fewer coefficients compared with existing PDD approximations.
2

Reciprocal classes of Markov processes : an approach with duality formulae

Murr, Rüdiger January 2012 (has links)
This work is concerned with the characterization of certain classes of stochastic processes via duality formulae. In particular we consider reciprocal processes with jumps, a subject up to now neglected in the literature. In the first part we introduce a new formulation of a characterization of processes with independent increments. This characterization is based on a duality formula satisfied by processes with infinitely divisible increments, in particular Lévy processes, which is well known in Malliavin calculus. We obtain two new methods to prove this duality formula, which are not based on the chaos decomposition of the space of square-integrable function- als. One of these methods uses a formula of partial integration that characterizes infinitely divisible random vectors. In this context, our characterization is a generalization of Stein’s lemma for Gaussian random variables and Chen’s lemma for Poisson random variables. The generality of our approach permits us to derive a characterization of infinitely divisible random measures. The second part of this work focuses on the study of the reciprocal classes of Markov processes with and without jumps and their characterization. We start with a resume of already existing results concerning the reciprocal classes of Brownian diffusions as solutions of duality formulae. As a new contribution, we show that the duality formula satisfied by elements of the reciprocal class of a Brownian diffusion has a physical interpretation as a stochastic Newton equation of motion. Thus we are able to connect the results of characterizations via duality formulae with the theory of stochastic mechanics by our interpretation, and to stochastic optimal control theory by the mathematical approach. As an application we are able to prove an invariance property of the reciprocal class of a Brownian diffusion under time reversal. In the context of pure jump processes we derive the following new results. We describe the reciprocal classes of Markov counting processes, also called unit jump processes, and obtain a characterization of the associated reciprocal class via a duality formula. This formula contains as key terms a stochastic derivative, a compensated stochastic integral and an invariant of the reciprocal class. Moreover we present an interpretation of the characterization of a reciprocal class in the context of stochastic optimal control of unit jump processes. As a further application we show that the reciprocal class of a Markov counting process has an invariance property under time reversal. Some of these results are extendable to the setting of pure jump processes, that is, we admit different jump-sizes. In particular, we show that the reciprocal classes of Markov jump processes can be compared using reciprocal invariants. A characterization of the reciprocal class of compound Poisson processes via a duality formula is possible under the assumption that the jump-sizes of the process are incommensurable. / Diese Arbeit befasst sich mit der Charakterisierung von Klassen stochastischer Prozesse durch Dualitätsformeln. Es wird insbesondere der in der Literatur bisher unbehandelte Fall reziproker Klassen stochastischer Prozesse mit Sprungen untersucht. Im ersten Teil stellen wir eine neue Formulierung einer Charakterisierung von Prozessen mit unabhängigen Zuwächsen vor. Diese basiert auf der aus dem Malliavinkalkül bekannten Dualitätsformel für Prozesse mit unendlich oft teilbaren Zuwächsen. Wir präsentieren zusätzlich zwei neue Beweismethoden dieser Dualitätsformel, die nicht auf der Chaoszerlegung des Raumes quadratintegrabler Funktionale beruhen. Eine dieser Methoden basiert auf einer partiellen Integrationsformel fur unendlich oft teilbare Zufallsvektoren. In diesem Rahmen ist unsere Charakterisierung eine Verallgemeinerung des Lemma fur Gaußsche Zufallsvariablen von Stein und des Lemma fur Zufallsvariablen mit Poissonverteilung von Chen. Die Allgemeinheit dieser Methode erlaubt uns durch einen ähnlichen Zugang die Charakterisierung unendlich oft teilbarer Zufallsmaße. Im zweiten Teil der Arbeit konzentrieren wir uns auf die Charakterisierung reziproker Klassen ausgewählter Markovprozesse durch Dualitätsformeln. Wir beginnen mit einer Zusammenfassung bereits existierender Ergebnisse zu den reziproken Klassen Brownscher Bewegungen mit Drift. Es ist uns möglich die Charakterisierung solcher reziproken Klassen durch eine Dualitätsformel physikalisch umzudeuten in eine Newtonsche Gleichung. Damit gelingt uns ein Brückenschlag zwischen derartigen Charakterisierungsergebnissen und der Theorie stochastischer Mechanik durch den Interpretationsansatz, sowie der Theorie stochastischer optimaler Steuerung durch den mathematischen Ansatz. Unter Verwendung der Charakterisierung reziproker Klassen durch Dualitätsformeln beweisen wir weiterhin eine Invarianzeigenschaft der reziproken Klasse Browscher Bewegungen mit Drift unter Zeitumkehrung. Es gelingt uns weiterhin neue Resultate im Rahmen reiner Sprungprozesse zu beweisen. Wir beschreiben reziproke Klassen Markovscher Zählprozesse, d.h. Sprungprozesse mit Sprunghöhe eins, und erhalten eine Charakterisierung der reziproken Klasse vermöge einer Dualitätsformel. Diese beinhaltet als Schlüsselterme eine stochastische Ableitung nach den Sprungzeiten, ein kompensiertes stochastisches Integral und eine Invariante der reziproken Klasse. Wir präsentieren außerdem eine Interpretation der Charakterisierung einer reziproken Klasse im Rahmen der stochastischen Steuerungstheorie. Als weitere Anwendung beweisen wir eine Invarianzeigenschaft der reziproken Klasse Markovscher Zählprozesse unter Zeitumkehrung. Einige dieser Ergebnisse werden fur reine Sprungprozesse mit unterschiedlichen Sprunghöhen verallgemeinert. Insbesondere zeigen wir, dass die reziproken Klassen Markovscher Sprungprozesse vermöge reziproker Invarianten unterschieden werden können. Eine Charakterisierung der reziproken Klasse zusammengesetzter Poissonprozesse durch eine Dualitätsformel gelingt unter der Annahme inkommensurabler Sprunghöhen.
3

Peak response of non-linear oscillators under stationary white noise

Muscolino, G., Palmeri, Alessandro January 2007 (has links)
Yes / The use of the Advanced Censored Closure (ACC) technique, recently proposed by the authors for predicting the peak response of linear structures vibrating under random processes, is extended to the case of non-linear oscillators driven by stationary white noise. The proposed approach requires the knowledge of mean upcrossing rate and spectral bandwidth of the response process, which in this paper are estimated through the Stochastic Averaging method. Numerical applications to oscillators with non-linear stiffness and damping are included, and the results are compared with those given by Monte Carlo Simulation and by other approximate formulations available in the literature.
4

[en] STOCHASTIC VOICE MODELING AND CLASSIFICATION OF THE OBTAINED SIGNAL USING ARTIFICIAL NEURAL NETWORKS / [pt] MODELAGEM ESTOCÁSTICA DE VOZ E CLASSIFICAÇÃO DOS SINAIS OBTIDOS USANDO REDES NEURAIS ARTIFICIAIS

JOSUE VALENTIN USCATA BARRIENTOS 13 May 2019 (has links)
[pt] O objetivo desta dissertação é classificar sinais de vozes, usando redes neurais, obtidos por meio de um modelo mecânico-estocástico para produção da voz humana, esse modelo foi construído a partir de uma abordagem probabilística não-paramétrica para considerar incertezas do modelo. Primeiro, uma rede neural artificial foi construída para classificar sinais de vozes reais, normais e provenientes de sujeitos com patologias nas cordas vocais. Como entradas da rede neural foram usadas medidas acústicas extraídas dos sinais glotais, obtidos por filtragem inversa dos sinais de vozes reais. Essa rede neural foi usada, posteriormente, para classificar sinais de vozes sintetizadas geradas por um modelo estocástico da produção da voz humana, no caso particular da geração de vogais. O modelo estocástico da produção da voz humana foi construído tomando por base o modelo determinístico criado por Ishizaka e Flanagan. Incertezas do modelo foram consideradas através de uma abordagem probabilística não-paramétrica de modo que matrizes aleatórias foram associadas às matrizes de massa, rigidez e amortecimento do modelo. Funções densidade de probabilidade foram construídas para essas matrizes, usando o Princípio da Máxima Entropia. O método de Monte Carlo foi usado para gerar realizaçoes de sinais de vozes. Os sinais obtidos foram então classificados usando a rede neural construída previamente. Das realizações obtidas, alguns sinais de vozes foram classificados como normais, porém outros foram classificados como provenientes de sujeitos com patologias nas cordas vocais. Os sinais com características de patologia foram classificados em três grupos: nódulo, paralisia unilateral e outras patologias. / [en] The aim of this thesis is to classify voice signals, using neural networks, obtained through a mechanical stochastic model for voice production, this model was built from a nonparametric probabilistic approach to take into account modeling uncertainties. At first, an artificial neural network was constructed to classify real voice signals, normal and produced by subjects with pathologies on the vocal folds. As inputs for the neural network were used acoustic measures extracted from the glottal signals, obtained by inverse filtering of the real voice signals. This neural network was used, later, to classify synthesized voice signal generated by a stochastic model of the voice production, in the particular case of vowels generation. The stochastic model was constructed from the corresponding deterministic model created by Ishizaka and Flanagan, in 1972. Modeling uncertainties were taken into account through a nonparametric probabilistic approach such that random matrices were associated to mass, stiffness and damping model matrices. Probability density functions were constructed for these matrices using the Maximum Entropy Principle. The Monte Carlo Method was used to generate realizations of the voice signals. The voice signals obtained were then classified using the neural network previously constructed. From the realizations obtained, some voice signals were classified as normal, but others were classified as produced by subjects with pathologies on the vocal folds. The signal with pathologies characteristics were classified into three groups: nodulus, unilateral paralysis and other pathologies.

Page generated in 0.0531 seconds