• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Risk-Averse Bi-Level Stochastic Network Interdiction Model for Cyber-Security Risk Management

Bhuiyan, Tanveer Hossain 10 August 2018 (has links)
This research presents a bi-level stochastic network interdiction model on an attack graph to enable a risk-averse resource constrained cyber network defender to optimally deploy security countermeasures to protect against attackers having an uncertain budget. This risk-averse conditional-value-at-risk model minimizes a weighted sum of the expected maximum loss over all scenarios and the expected maximum loss from the most damaging attack scenarios. We develop an exact algorithm to solve our model as well as several acceleration techniques to improve the computational efficiency. Computational experiments demonstrate that the application of all the acceleration techniques reduces the average computation time of the basic algorithm by 71% for 100-node graphs. Using metrics called mean-risk value of stochastic solution and value of risk-aversion, numerical results suggest that our stochastic risk-averse model significantly outperforms deterministic and risk-neutral models when 1) the distribution of attacker budget is heavy-right-tailed and 2) the defender is highly risk-averse.
2

Two-person games for stochastic network interdiction : models, methods, and complexities

Nehme, Michael Victor 27 May 2010 (has links)
We describe a stochastic network interdiction problem in which an interdictor, subject to limited resources, installs radiation detectors at border checkpoints in a transportation network in order to minimize the probability that a smuggler of nuclear material can traverse the residual network undetected. The problems are stochastic because the smuggler's origin-destination pair, the mass and type of material being smuggled, and the level of shielding are known only through a probability distribution when the detectors are installed. We consider three variants of the problem. The first is a Stackelberg game which assumes that the smuggler chooses a maximum-reliability path through the network with full knowledge of detector locations. The second is a Cournot game in which the interdictor and the smuggler act simultaneously. The third is a "hybrid" game in which only a subset of detector locations is revealed to the smuggler. In the Stackelberg setting, the problem is NP-complete even if the interdictor can only install detectors at border checkpoints of a single country. However, we can compute wait-and-see bounds in polynomial time if the interdictor can only install detectors at border checkpoints of the origin and destination countries. We describe mixed-integer programming formulations and customized branch-and-bound algorithms which exploit this fact, and provide computational results which show that these specialized approaches are substantially faster than more straightforward integer-programming implementations. We also present some special properties of the single-country case and a complexity landscape for this family of problems. The Cournot variant of the problem is potentially challenging as the interdictor must place a probability distribution over an exponentially-sized set of feasible detector deployments. We use the equivalence of optimization and separation to show that the problem is polynomially solvable in the single-country case if the detectors have unit installation costs. We present a row-generation algorithm and a version of the weighted majority algorithm to solve such instances. We use an exact-penalty result to formulate a model in which some detectors are visible to the smuggler and others are not. This may be appropriate to model "decoy" detectors and detector upgrades. / text
3

Decomposition Algorithms in Stochastic Integer Programming: Applications and Computations.

Saleck Pay, Babak 01 January 2017 (has links)
In this dissertation we focus on two main topics. Under the first topic, we develop a new framework for stochastic network interdiction problem to address ambiguity in the defender risk preferences. The second topic is dedicated to computational studies of two-stage stochastic integer programs. More specifically, we consider two cases. First, we develop some solution methods for two-stage stochastic integer programs with continuous recourse; second, we study some computational strategies for two-stage stochastic integer programs with integer recourse. We study a class of stochastic network interdiction problems where the defender has incomplete (ambiguous) preferences. Specifically, we focus on the shortest path network interdiction modeled as a Stackelberg game, where the defender (leader) makes an interdiction decision first, then the attacker (follower) selects a shortest path after the observation of random arc costs and interdiction effects in the network. We take a decision-analytic perspective in addressing probabilistic risk over network parameters, assuming that the defender's risk preferences over exogenously given probabilities can be summarized by the expected utility theory. Although the exact form of the utility function is ambiguous to the defender, we assume that a set of historical data on some pairwise comparisons made by the defender is available, which can be used to restrict the shape of the utility function. We use two different approaches to tackle this problem. The first approach conducts utility estimation and optimization separately, by first finding the best fit for a piecewise linear concave utility function according to the available data, and then optimizing the expected utility. The second approach integrates utility estimation and optimization, by modeling the utility ambiguity under a robust optimization framework following \cite{armbruster2015decision} and \cite{Hu}. We conduct extensive computational experiments to evaluate the performances of these approaches on the stochastic shortest path network interdiction problem. In third chapter, we propose partition-based decomposition algorithms for solving two-stage stochastic integer program with continuous recourse. The partition-based decomposition method enhance the classical decomposition methods (such as Benders decomposition) by utilizing the inexact cuts (coarse cuts) induced by a scenario partition. Coarse cut generation can be much less expensive than the standard Benders cuts, when the partition size is relatively small compared to the total number of scenarios. We conduct an extensive computational study to illustrate the advantage of the proposed partition-based decomposition algorithms compared with the state-of-the-art approaches. In chapter four, we concentrate on computational methods for two-stage stochastic integer program with integer recourse. We consider the partition-based relaxation framework integrated with a scenario decomposition algorithm in order to develop strategies which provide a better lower bound on the optimal objective value, within a tight time limit.

Page generated in 0.145 seconds