• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 111
  • 16
  • 9
  • 8
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 177
  • 177
  • 59
  • 41
  • 39
  • 30
  • 26
  • 26
  • 25
  • 24
  • 23
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Quantile Estimation for some Stochastic Volatility Models

Luo, Ling 05 October 2011 (has links)
In this thesis we consider estimation of the tail index for heavy tailed stochastic volatility models with long memory. We prove a central limit theorem for a Hill estimator. In particular, it is shown that neither the rate of convergence nor the asymptotic variance is affected by long memory. The theoretical findings are verified by simulation studies.
2

High Quantile Estimation for some Stochastic Volatility Models

Luo, Ling 05 October 2011 (has links)
In this thesis we consider estimation of the tail index for heavy tailed stochastic volatility models with long memory. We prove a central limit theorem for a Hill estimator. In particular, it is shown that neither the rate of convergence nor the asymptotic variance is affected by long memory. The theoretical findings are verified by simulation studies.
3

Stochastic volatility models with persistent latent factors: theory and its applications to asset prices

Lee, Hyoung Il 10 October 2008 (has links)
We consider the stochastic volatility model with smooth transition and persistent la- tent factors. We argue that this model has advantages over the conventional stochastic model for the persistent volatility factor. Though the linear filtering is widely used in the state space model, the simulation result, as well as theory, shows that it does not work in our model. So we apply the density-based filtering method; in particular, we develop two methods to get solutions. One is the conventional approach using the Maximum Likelihood estimation and the other is the Bayesian approach using Gibbs sampling. We do a simulation study to explore their characteristics, and we apply both methods to actual macroeconomic data to extract the volatility generating process and to compare macro fundamentals with them. Next we extend our model into multivariate model extracting common and id- iosyncratic volatility for multivariate processes. We think it is interesting to apply this multivariate model into measuring time-varying uncertainty of macroeconomic variables and studying the links to market returns via a consumption-based asset pric- ing model. Motivated by Bansal and Yaron (2004), we extract a common volatility factor using consumption and dividend growth, and we find that this factor predicts post-war business cycle recessions quite well. Then, we estimate a long-run risk model of asset prices incorporating this macroeconomic uncertainty. We find that both risk aversion and the intertemporal elasticity of substitution are estimated to be around two, and our simulation results show that the model can match the first and second moments of market return and risk-free rate, hence the equity premium.
4

Understanding approximate Bayesian computation(ABC)

Lim, Boram 16 March 2015 (has links)
The Bayesian approach has been developed in various areas and has come to be part of main stream statistical research. Markov Chain Monte Carlo (MCMC) methods have freed us from computational constraints for a wide class of models and several MCMC methods are now available for sampling from posterior distributions. However, when data is large and models are complex and the likelihood function is intractable we are limited in the use of MCMC, especially in evaluating likelihood function. As a solution to the problem, researchers have put forward approximate Bayesian computation (ABC), also known as a likelihood-free method. In this report I introduce the ABC algorithm and show implementation for a stochastic volatility model (SV). Even though there are alternative methods for analyzing SV models, such as particle filters and other MCMC methods, I show the ABC method with an SV model and compare it, based on the same data and the SV model, to an approach based on a mixture of normals and MCMC. / text
5

High Quantile Estimation for some Stochastic Volatility Models

Luo, Ling 05 October 2011 (has links)
In this thesis we consider estimation of the tail index for heavy tailed stochastic volatility models with long memory. We prove a central limit theorem for a Hill estimator. In particular, it is shown that neither the rate of convergence nor the asymptotic variance is affected by long memory. The theoretical findings are verified by simulation studies.
6

High Quantile Estimation for some Stochastic Volatility Models

Luo, Ling January 2011 (has links)
In this thesis we consider estimation of the tail index for heavy tailed stochastic volatility models with long memory. We prove a central limit theorem for a Hill estimator. In particular, it is shown that neither the rate of convergence nor the asymptotic variance is affected by long memory. The theoretical findings are verified by simulation studies.
7

Pricing equity derivatives under stochastic volatility : A partial differential equation approach

Sheppard, Roelof 20 October 2008 (has links)
NO ABSTRACT PRESENT ON CD.
8

Option Pricing with Long Memory Stochastic Volatility Models

Tong, Zhigang 06 November 2012 (has links)
In this thesis, we propose two continuous time stochastic volatility models with long memory that generalize two existing models. More importantly, we provide analytical formulae that allow us to study option prices numerically, rather than by means of simulation. We are not aware about analytical results in continuous time long memory case. In both models, we allow for the non-zero correlation between the stochastic volatility and stock price processes. We numerically study the effects of long memory on the option prices. We show that the fractional integration parameter has the opposite effect to that of volatility of volatility parameter in short memory models. We also find that long memory models have the potential to accommodate the short term options and the decay of volatility skew better than the corresponding short memory stochastic volatility models.
9

Asymptotic Methods for Stochastic Volatility Option Pricing: An Explanatory Study

Chen, Lichen 13 January 2011 (has links)
In this project, we study an asymptotic expansion method for solving stochastic volatility European option pricing problems. We explain the backgrounds and details associated with the method. Specifically, we present in full detail the arguments behind the derivation of the pricing PDEs and detailed calculation in deriving asymptotic option pricing formulas using our own model specifications. Finally, we discuss potential difficulties and problems in the implementation of the methods.
10

A Preliminary View of Calculating Call Option Prices Utilizing Stochastic Volatility Models

shen, karl 29 April 2009 (has links)
We will begin with a review of key financial topics and outline many of the crucial ideas utilized in the latter half of the paper. Formal notation for important variables will also be established. Then, a derivation of the Black-Scholes equation will lead to a discussion of its shortcomings, and the introduction of stochastic volatility models. Chapter 2 will focus on a variation of the CIR Model using stock price in the volatility driving process, and its behavior to a greater degree. The key area of discussion will be to approximate a hedging function for European call option prices by Taylor Expansion. We will apply this estimation to real data, and analyze the behavior of the price correction. Then make conclusions about whether stock price has any positive effects on the model.

Page generated in 0.0932 seconds