1 |
Mikroskopie listů různých druhů rodu Bergenia. / Microscopy of leaves from different Bergenia species.Rulfová, Kateřina January 2015 (has links)
Plants of the genus Bergenia are part of remedies used in Ayurveda medicine. They also play an important part in traditional healing practice in China, India, Mongolia and Russia. Theoretical part of this thesis sums the newest findings and research results concerning three Bergenia species: Bergenia ciliata (Haw.) Sternb., Bergenia crassifolia (L.) Fritsch a Bergenia ornata Stein. The thesis mainly focuses on their current and potential use in medicine and pharmacy. Bergenia extract is traditionally used for dissolving kidney stones, treating respiratory tract illnesses and to stop bleeding. The most important active substances of these plants, their characteristics and main effects are also noted. Bergenia is an important source of arbutin and bergenin. Bergenin has antitussive, antiflogistic and gastroprotective effects. Arbutin is used to treat urinary tract diseases and in cosmetology to lighten the skin. The experimental part of this thesis includes methods of preparation of permanent microscope slides from leaves of chosen Bergenia species. Photographs have been taken from both permanent and native slides. Anatomy of the leaf and leaf epidermis is described including stomatal index. Presence of calcium oxalate crystals in form of druses is also documented. Basic anatomical features were...
|
2 |
Stomatal index of Ginkgo biloba as a proxy for atmospheric CO2Conde, Giselle 21 November 2016 (has links)
This thesis presents a new calibration of the Ginkgo stomatal index as a proxy for atmospheric CO2 concentrations using leaves from modern Ginkgo biloba herbarium specimens. Scanning electron images were obtained to count stomates and cells on leaves collected between 1829 and 2015. Average stomatal index (SI) was then calculated for each year. SI is defined as #stomates/(#stomates + # epidermal cells)*100. The relationship between stomatal index and atmospheric CO2 can be expressed in an equation following the form recommended by Wynn (2003), as the most likely representation of the physical laws governing CO2 diffusion across stomates. The new fitted equation for determining CO2 from Ginkgo SI is: CO2=205.7+13,630,000 x SI^(-5.224). This new equation is applied to suitably preserved Cenozoic fossil leaves of Ginkgo and results in a downward revision of estimated CO2 levels, while preserving the general shape of greenhouse spikes in the middle Miocene and Eocene. These spikes correlate to climatic warm and wet spikes derived from paleosol evidence during those times. / 10000-01-01
|
Page generated in 0.0569 seconds