• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Threat Assessment Algorithm for Intersection Collision Avoidance Systems

Doerzaph, Zachary R. 11 February 2008 (has links)
Relative to other roadway segments, intersections occupy a small portion of the overall infrastructure; however, they represent the location for nearly 41 % of the annual automotive crashes in the United States. Thus, intersections are an inherently dangerous roadway element and a prime location for vehicle conflicts. Traditional safety treatments are effective at addressing certain types of intersection safety deficiencies; however, cumulative traffic data suggests these treatments do not address a large portion of the crashes that occur each year. Intersection Collision Avoidance Systems (ICAS) represent a new breed of countermeasures that focus on the types of crashes that have not been reduced with the application of traditional methods. Incursion systems, a subset of ICAS, are designed to specifically undertake crashes that are a result of the violation of a traffic control device. Intersection Collision Avoidance Systems to address Violations (ICAS-V) monitor traffic as it approaches the intersection through a network of in-vehicle sensors, infrastructure- mounted sensors, and communication equipment. A threat-assessment algorithm performs computations to predict the driver's intended intersection maneuver, based on these sensor inputs. If the system predicts a violation, it delivers a timely warning to the driver with the aim of compelling the driver to stop. This warning helps the driver to avoid a potential crash with adjacent traffic. The following dissertation describes an investigation of intersection approach behavior aimed at developing a threat assessment algorithm for stop-sign intersections. Data were collected at live intersections to gather infrastructure-based naturalistic vehicle approach trajectories. This data were compiled and analyzed with the goal of understanding how drivers approach intersections under various speeds and environmental conditions. Six stop-controlled intersection approaches across five intersections in the New River Valley, Virginia area were selected as the test sites. Data were collected from each site for at least two months, resulting in over sixteen total months of data. A series of statistical analysis techniques were applied to construct a set of threat assessment algorithms for stop-controlled intersections. These analyses identified characteristics of intersection approaches that suggested driver intent at the stop sign. Models were constructed to predict driver stopping intent based on measured vehicle kinematics. These models were thoroughly tested using simulation and evaluated with signal detection theory. The overall output of this work is a set of algorithms that may be integrated into an ICAS-V for on-road testing. / Ph. D.
2

Safety, Operational, and Energy Impacts of In-Vehicle Adaptive Stop Displays Using Connected Vehicle Technology

Noble, Alexandria M. 23 January 2015 (has links)
Driving through an un-signalized intersection creates multiple opportunities for missed or misunderstood information. Stop signs, in particular, can be stolen, covered by vegetation, or rotated out of place, leading to an absence of information, contributing to inappropriate decision-making and crashes. Stop controlled intersections have also been shown to be a source of unnecessary delay and emissions due to their frequent, often inappropriate use. Using connected vehicle technology, it is possible to place an electronic stop sign within the vehicle that tells the driver to stop when a conflict in the intersection is imminent, thus reducing the probability of missed information by the driver, and decreasing the amount of unnecessary delay, fuel consumption, and emissions. Before implementing any new technology, it is important to assess it from both a transportation engineering and human factors standpoint to assess the value of the system. The objective of this study was to assess several key benefits of an adaptive in-vehicle stop display as well as to determine if there are any negative safety implications with the use of this system. This assessment was accomplished through a test track experiment where participants experienced conditions where a standard R1-1 stop sign was displayed on the in-vehicle display, as well as an experimental sign, which informed them to proceed through the intersection with caution. Data collected from in-vehicle sensors was analyzed, and results indicate that the implementation of this technology reduces delay, decreases fuel consumption, and does not instigate any safety decrements. / Master of Science

Page generated in 0.0902 seconds