• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Iterative Decoding of Codes on Graphs

Sankaranarayanan, Sundararajan January 2006 (has links)
The growing popularity of a class of linear block codes called the low-density parity-check (LDPC) codes can be attributed to the low complexity of the iterative decoders, and their potential to achieve performance very close to the Shannon capacity. This makes them an attractive candidate for ECC applications in communication systems. This report proposes methods to systematically construct regular and irregular LDPC codes.A class of regular LDPC codes are constructed from incidence structures in finite geometries like projective geometry and affine geometry. A class of irregular LDPC codes are constructed by systematically splitting blocks of balanced incomplete block designs to achieve desired weight distributions. These codes are decoded iteratively using message-passing algorithms, and the performance of these codes for various channels are presented in this report.The application of iterative decoders is generally limited to a class of codes whose graph representations are free of small cycles. Unfortunately, the large class of conventional algebraic codes, like RS codes, has several four cycles in their graph representations. This report proposes an algorithm that aims to alleviate this drawback by constructing an equivalent graph representation that is free of four cycles. It is theoretically shown that the four-cycle free representation is better suited to iterative erasure decoding than the conventional representation. Also, the new representation is exploited to realize, with limited success, iterative decoding of Reed-Solomon codes over the additive white Gaussian noise channel.Wiberg, Forney, Richardson, Koetter, and Vontobel have made significant contributions in developing theoretical frameworks that facilitate finite length analysis of codes. With an exception of Richardson's, most of the other frameworks are much suited for the analysis of short codes. In this report, we further the understanding of the failures in iterative decoders for the binary symmetric channel. The failures of the decoder are classified into two categories by defining trapping sets and propagating sets. Such a classification leads to a successful estimation of the performance of codes under the Gallager B decoder. Especially, the estimation techniques show great promise in the high signal-to-noise ratio regime where the simulation techniques are less feasible.
2

Physical-layer security: practical aspects of channel coding and cryptography

Harrison, Willie K. 21 June 2012 (has links)
In this work, a multilayer security solution for digital communication systems is provided by considering the joint effects of physical-layer security channel codes with application-layer cryptography. We address two problems: first, the cryptanalysis of error-prone ciphertext; second, the design of a practical physical-layer security coding scheme. To our knowledge, the cryptographic attack model of the noisy-ciphertext attack is a novel concept. The more traditional assumption that the attacker has the ciphertext is generally assumed when performing cryptanalysis. However, with the ever-increasing amount of viable research in physical-layer security, it now becomes essential to perform the analysis when ciphertext is unreliable. We do so for the simple substitution cipher using an information-theoretic framework, and for stream ciphers by characterizing the success or failure of fast-correlation attacks when the ciphertext contains errors. We then present a practical coding scheme that can be used in conjunction with cryptography to ensure positive error rates in an eavesdropper's observed ciphertext, while guaranteeing error-free communications for legitimate receivers. Our codes are called stopping set codes, and provide a blanket of security that covers nearly all possible system configurations and channel parameters. The codes require a public authenticated feedback channel. The solutions to these two problems indicate the inherent strengthening of security that can be obtained by confusing an attacker about the ciphertext, and then give a practical method for providing the confusion. The aggregate result is a multilayer security solution for transmitting secret data that showcases security enhancements over standalone cryptography.

Page generated in 0.0713 seconds