• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Temperature and Soil Moisture Effects on Growth, Development, Physiology, Storage Root Initiation, and Biomass Yield in Sweetpotato

Gajanayake, Karande Gajanayake Mudiyanselage Chandana Preethi Bandara 17 May 2014 (has links)
Temperature and soil moisture (SM) are the two main environmental factors affecting sweetpotato growth and yield. Quantitative functional algorithms of plant growth and developmental processes under a wide range of above factors are needed for developing tools for modeling. Four experiments were conducted to quantify early and late season SM and temperature effects on sweetpotato growth, development, and physiology. In experiment I, effects of five SM levels were evaluated in a greenhouse using cultivars, Beauregard and Evangeline. Experiment II was conducted to evaluate late-season SM effects with four evapotranspiration (ET) based irrigation. In experiment III, five temperatures were imposed at early season (0-59 days after transplanting (DAT)). Late season temperature effects were evaluated with four day/night temperatures from 17 to 91 DAT, in experiment IV. Experiments II, III, and IV were conducted in soil plant atmosphere research facility using Beauregard. Growth, developmental, and physiological parameters were measured. Rate of storage root (SR) development of both cultivars showed a quadratic decline with decreasing SM. Soil moisture optima for SR initiation were 0.168 and 0.199 m3 m-3, equivalent to 63 and 75% field capacity (FC), for cultivars Beauregard and Evangeline, respectively. Shoot biomass declined more rapidly than root with declining SM. Results revealed that, maintaining SM closer to FC during early season is beneficial for early development of root and shoot. Storage root biomass declined quadratically with declining irrigation. The optimum irrigation was 72% of ET and less biomass was partitioned to SRs above that level. Early season temperature study revealed, SR conversion efficiency increased quadratically and reached optimum at 23.9°C with increasing temperature. Maximum rate of SR initiation was reached at 29.5°C in 16.7 d. Biomass partitioned to roots declined linearly with increasing temperature. The SR production efficiency declined from 0.43 to 0.08 g SR kg-1 total weight, and dropped by 81% relative to optimum temperature. The SR fresh weight at high temperature declined 99% relative to optimum temperature. High temperature during mid- and late-seasons partitioned more biomass to shoots, less to roots lowering SR yield. The functional algorithms developed are vital to make management decisions and to develop crop models.
2

Morphological and Physiological Characterization of Sweetpotato Roots after Skinning

Bonilla Bird, Nestor 11 December 2015 (has links)
Sweetpotato is an important staple crop, and a supplementary source of nutrients; minerals, carbohydrates, and vitamins, for the food industry. Quality of sweetpotatoes depends on cultivar, preharvest management practices, and harvest equipment causing skinning. Information on morph-physiological characteristics of storage roots is needed for preharvest management decisions, cultivar selection, and application of harvest aids and harvesting procedures for postharvest storage durability of sweetpotatoes. Also, devices to measure skinning properties of storage roots are needed. This research was conducted to measure skin toughness of various sweetpotato cultivars. The number of skin layers was determined using fluorescent microscopy, and lignin content was determined with the Near Infrared System. Preharvest cultural practices, such as devining to enhance skin set and lignin content, were applied 1, 3, 7 days preharvest, and Ethephon at the rate of 1.68 ha-and 0.84 kg ha-1 applied at 1, 3, and 7 days preharvest. In addition, curing to enhance skin healing and lignin content was evaluated. This research was conducted in the field and in the greenhouse environments. The force gauge and the torquometer were the most accurate and precise devices to measure the force needed to break the skin of the various sweetpotato cultivars. The cultivars, “L07-6R”, “L07-146”, and “Beauregard-14” had the toughest skin compared to the other cultivars. However, “Covington” and “Hatteras” had the highest lignin content. Fluorescent microscopy showed that the cultivars “L07-6R” and “L07-146” had 12 and 10 cell layers, respectively, and the treatment of Ethephon at 1.68 Kg∙ha-1 3 days and 7 days before harvest resulted in the highest lignin content in the skin. Divining 3 days preharvest, and applying Ethephon at 0.84 kg∙ha-1 at 1day and 3days preharvest resulted in the highest lignin content. In addition, the treatments with Ethephon at 1.68 Kg∙ha-1 applied at 3 days and 7 days preharvest resulted in the hardest skin as indicated by torquometer and the force gauge. Curing for 7 days resulted in higher lignin content compared to the others pretreatments. When wounded and cured for 7 days, the healing process was enhanced greatly, resulting in rapid skin set of sweetpotato storage roots.
3

S-Metolachlor Phytotoxicity in Sweetpotato

Abukari, Issah Alidu 15 August 2014 (has links)
S-metolachlor is an effective herbicide used to control/suppress annual grasses, nutsedges and several broadleaf weeds in sweetpotato. However, a decline in storage root quality and yield has been reported under certain environmental conditions. Information is limited on the effect of S-metolachlor application followed immediately by rainfall on sweetpotato growth and development under different temperatures, as well as the optimum application time. Therefore, the objectives of this study were to evaluate sweetpotato responses to interactive effects of S-metolachlor, temperature and rainfall, and to determine S-metolachlor optimum application time. A sunlit, controlled environment experiment was conducted to investigate sweetpotato response to S-metolachlor and rainfall immediately after application under different temperatures. Sweetpotato slips were transplanted into sandy soil filled pots. Treatment combinations included five levels of S-metolachlor, 0.00, 0.86, 1.72, 2.58 and 3.44 kg ha-1, two levels of rainfall, 0 and 38 mm and three temperatures, 25/17, 30/22 and 35/27 °C, day/night. After POST application of S-metolachlor and rainfall, all plants were transferred to sunlit growth chambers that were maintained at their respective temperatures and ambient CO2 concentration for 60 days. In another experiment, S-metolachlor application time was varied to investigate sweetpotato growth and development. Two levels of S-metolachlor 0.0 and 1.0 kg ha-1 and three application times 0, 5 and 10 days after transplanting (DAT) were used and plants were harvested five times, 5, 10, 15, 20 and 80 DAT to estimate plant growth and development. Shoot, root and total plant biomass yields declined with increasing concentration of S-metolachlor across temperatures. In addition, storage root yield and quality decline was S-metolachlor rate dependent and aggravated by rainfall immediately after herbicide treatment across temperatures. S-metolachlor was more injurious on most plant component parameters in the optimum and high temperatures where plant growth was vigorous than in the low temperatures. S-metolachlor application at 0 and 5 days affected sweetpotato growth, including storage roots, but delaying until 10 days minimized the injury. These results can be used to weigh the risk of crop injury against the weed control benefits of S-metolachlor when making management decisions, and to determine application time based on weather information.

Page generated in 0.043 seconds