• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 21
  • 19
  • 14
  • 7
  • 6
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 269
  • 269
  • 103
  • 75
  • 67
  • 59
  • 33
  • 29
  • 29
  • 29
  • 29
  • 29
  • 28
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

EFFECT OF CARBON BLACK FILLERS ON HIGH STRAIN RATE PROPERTIES OF NATURAL RUBBER

Hussain, Syeda Aquila January 2005 (has links)
No description available.
112

Loading Rate Effects on Axial Pile Capacity in Clays

Garner, Michael Paul 18 July 2007 (has links) (PDF)
In order to design more efficient and reliable structures, axial load tests are performed on foundation piles. Traditionally, static tests with an average duration of approximately twenty-four hours have been performed on test piles to obtain their axial capacity. These static tests require multiple piles used as anchors in addition to the test pile. Static tests are both expensive and time consuming. An alternative to static testing is dynamic testing which requires sophisticated interpretation, can damage the pile and may not produce accurate results. There is a relatively new testing method called the Statnamic Testing Method which tests foundation piles at a very fast rate, but still slower than with dynamic tests. As the rate at which load is applied to a test pile increases, the axial capacity also increases, particularly in clay. Research suggests that shear strength of soil typically increases 10% per log cycle increase in strain rate. Strain rate effects can vary widely and may be influenced by many factors including plasticity index, structure, ageing, overconsolidation ratio, temperature, etc. Statnamic testing was performed for this work. Nine static tests were performed on six different piles identical to the Statnamic test pile and driven through the same soil profile. The static tests had times to failure ranging from ten seconds to eighteen hours. Failure load increased by 13.7% per log cycle increase in velocity. Statnamic tests need more careful analysis when performed in clay to avoid over predicting pile capacity. A factor of 0.55 should be applied to Statnamic capacity to predict static capacity.
113

SSRT of 10-4 FeCrAl in LBE and Pb to Characterize Liquid Metal Embrittlement Effects / SSRT-Testing av 10-4 FeCrAl i LBE och Pb för karakterisering av LME

Stein, Daniel January 2022 (has links)
In this work the susceptibility of Fe-10Cr-4Al steel to liquid metal embitterment (LME)in low oxygen environment was investigated. slow strain rate testing (SSRT) wereconducted on 10-4 FeCrAl steel in a stagnant lead from 340-480◦C, lead-bismutheutectic (LBE) from 140-450◦C and lead-bismuth mixture at 375◦C with increasingbismuth content from 0.1wt%-40wt%. The results showed that in the stagnant leadenvironment the FeCrAl steel showed no sign of LME with all samples being subjectedto around 25% strain before final break. In LBE the samples were affected by LMEespecially at 350-400◦C. The total elongation to failure reduced in LBE from 25%to 13.1% and a ductility trough from 190-400◦C was observed. In the lead-bismuthmixture there was a reduction in ductility at 5wt% going from 25% to 20% totalelongation, at 15wt% going from 20% to 16% total elongation and at 30wt% going from16% to 13% total elongation. / I det här arbetet har stålet Fe-10Cr-4Al känslighet till liquidmetal embrittlemnt(LME)i låga syre miljöer av flytande bly, mellan 340-480 °C, och Bly/Vismut eutektisk (LBE),mellan 140-450 °C, undersökts. En stegvis ökning av Vismut halten i flytande blygenfördes också från 0.1 wt% Bi till 40 wt% Bi med en fast temperatur på 375 °C.Resultaten från dessa experiment visade att i ren bly miljö så visade stålet Fe-10Cr-4Al inga tecken på LME, alla prover gick till brott runt 25% strain. I LBE blev ståletsvårt på verkat av LME, framför allt inom temperaturer intervallet 350-400 °C. Dentotala förlängningen av proverna blev här reducerat från 25% ner till 13.1% och en klarduktilitets tråg mellan 190-400 °C kunde observeras. I experimenten med gradvisökande Vismut halt observerades markanta nedgångar i stålets duktilitet vid 5 wt%Bi då den droppar från 25% till 20% förlängning, nästa dropp observerades vid 15 wt%Bi, 20%-16% och vid 30 wt% Bi med ett reduktion från 16% till 13%.
114

HHARJONO_MASTERS_THESIS-6.pdf

Hanson-Lee Nava Harjono (14232875) 09 December 2022 (has links)
<p>In an AP-HTPB propellant microstructure, the local strain rate depends on the AP crystal size and the material, while the local temperature rate depends on the impact velocity, AP crystal size, and the material.  Larger AP crystals lead to higher local strain rates and higher local temperature rates, which means hot spots are more likely to occur in AP-HTPB propellants with more large AP crystals.</p>
115

Dynamic strength properties of structural steel at elevated rates of strain

Murray, Matthew P 01 May 2020 (has links)
Experiments were conducted on ASTM A572 50 and A992 steel over a range of intermediate strain rates in order to determine material strength properties of structural members subjected to dynamic loadings. The yield and ultimate tensile stress (UTS) of the steels were determined at increasing strain rates using a hydraulic apparatus and compared to static values obtained from ASTM E8 standardized tensile experiments. Results revealed that A572-50 steel exhibited an increase in yield stress of up to 35% and UTS of up to 20% as strain rate increased from 0.002 to 2.0 s-1. A992 steel demonstrated a similar increase in yield stress of up to 45% and UTS of up to 20%. Ratios of dynamic-to-static strengths were used to develop dynamic increase factor curves spanning the range of strain rates studied. These curves provide designers with material property values required for accurate and economical design of protective structures.
116

Micro-Structural Response Of Dp 600 To High Strain Rate Deformation

Hamburg, Brian Fredrick 15 December 2007 (has links)
The object of this study was to investigate the micro-structural response of DP 600 subjected to high strain rate, ballistic impact tests. The ballistic tests were conducted using normal impact of a hardened steel penetrator into a 2 mm thick sheet of DP 600. The average strain rates produced from this test method are on the order of 10^5 s-1. Multiple methods were used to investigate the micro-structure before and after high strain rate deformation including optical microscopy, electron microscopy, and X-ray diffraction. A large variation in material response was observed between tests conducted at 0.8 x 10^5 and 2.5 x 10^5 s-1.
117

High Strain-Rate Compression Behavior of a Zr-based Bulk Metallic Glass

Sunny, George Padayatil January 2008 (has links)
No description available.
118

A High Strain-Rate Investigation of a Zr-based Bulk Metallic Glass and an HTPB Polymer Composite

Sunny, George Padayatil 15 March 2011 (has links)
No description available.
119

Inhibition of Corrosion and Stress Corrosion Cracking of Sensitized AA5083

Seong, Jinwook 19 May 2015 (has links)
No description available.
120

Influence of Strain Rate Sensitivity (SRS) of Additive Manufactured Ti-6Al-4V on Nanoscale Wear Resistance

Pelini, Angelo January 2017 (has links)
No description available.

Page generated in 0.0678 seconds