• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approche expérimentale de la dynamique non-linéaire d'ondes internes en rotation / Experimental approach of the non-linear dynamics of internal waves in rotation

Maurer, Paco 22 June 2017 (has links)
Au travers de leurs instabilités, les ondes internes de gravité, qui se propagent dans les fluides stratifiés, jouent un rôle crucial dans la dynamique océanique. En effet, ces instabilités transfèrent de l'énergie vers les petites échelles et créent ainsi du mélange. Parmi ces mécanismes, nous avons étudié l'instabilité triadique résonante (TRI). Ce processus se caractérise par l'émission à partir d'une onde-mère de deux ondes-filles, dont les fréquences et vecteurs d'onde vérifient avec l'onde-mère des conditions de résonance temporelle et spatiale. Dans le cas où une rotation globale du fluide (cas général en géophysique) s'ajoute à la rotation, celle-ci va changer les propriétés non seulement des ondes internes, on les appellera alors ondes gravito-inertielles, mais aussi de la TRI. L’étude expérimentale sur table tournante de l'instabilité d'un faisceau de forme contrôlée d'onde gravito-inertielle a mis en évidence l’importance de la rotation sur les caractéristiques de la TRI, comme le seuil d'instabilité ou les caractéristiques des ondes secondaires. En outre, ces résultats sont en très bon accord avec un développement asymptotique de cette instabilité qui prend en compte la taille finie du faisceau, paramètre déterminant au laboratoire et dans un contexte océanique. Cet effet est responsable notamment de l'existence d'une latitude critique dans l'océan.Dans un second temps, la réalisation d'un nouveau type de générateur d'onde axisymétrique a permis d'étudier la propagation d'ondes axisymétriques à trois dimensions. Les modes axisymétriques générés par ce nouveau dispositif ont été caractérisés et comparés aux solutions analytiques. Ce dispositif permet également de créer une excitation annulaire localisée qui focalise les ondes internes au centre de la cuve. En changeant la vitesse de groupe de ces ondes, au travers d'une stratification non-linéaire, nous pouvons créer une forte accumulation d'énergie au point de focalisation. En fonction de l'amplitude de l'excitation, on observe la transition entre un état stable vers un état fortement instable. / Through their instabilities, internal gravity waves, which propagate in stratified fluids, play a paramount role in the oceanic dynamics. Indeed, their instabilities transfer energy to small scales and lead to mixing. Among these instabilities, we studied the triadic resonant instability (TRI). This process is characterized by the generation from a primary wave of two secondary internal waves, whose frequencies and wave vectors fulfill the spatial and time resonance conditions. If the fluid is also rotating (which is in generally the case in geophysics), rotation changes not only the properties of internal waves, which, in this case, are named inertia-gravity waves, but also the properties of the TRI. The experimental study on a rotating plateform of the instability of a controlled internal wave beam highlighted the role played by rotation on TRI features, such as the instability threshold or the characteristics of the secondary waves. Moreover, these results are in excellent agreement with an asymptotic development of the instability that takes into account the finite width of the wave beam, key parameter in a laboratory and oceanic context. this effect is responsible for the existence of a critical latitude in the ocean.In a second part of this work, we built a new wave generator, which allowed for the study of tridimensional axisymmetric waves. The axisymmetric modes generated by this new set-up were characterized and compared to analytical solutions. The generator can also produce a localized axisymmetric bump which focalises the wave in the center of the tank. By changing the group velocity of the waves, through a non-linear stratification, we are able to create a large energy build-up at the point of focalisation. Depending on the amplitude of the wave, we observe the transition from a stable state to a strongly unstable one.
2

Stratified-medium sound speed profiling for CPWC ultrasound imaging

D'Souza, Derrell 13 July 2020 (has links)
Coherent plane-wave compounding (CPWC) ultrasound is an important modality enabling ultrafast biomedical imaging. To perform CWPC image reconstruction for a stratified (horizontally layered) medium, one needs to know how the speed of sound (SOS) varies with the propagation depth. Incorrect sound speed and layer thickness assumptions can cause focusing errors, degraded spatial resolution and significant geometrical distortions resulting in poor image reconstruction. We aim to determine the speed of sound and thickness values for each horizontal layer to accurately locate the recorded reflection events to their true locations within the medium. Our CPWC image reconstruction process is based on phase-shift migration (PSM) that requires the user to specify the speed of sound and thickness of each layer in advance. Prior to performing phase-shift migration (one layer at a time, starting from the surface), we first estimate the speed of sound values of a given layer using a cosine similarity metric, based on the data obtained by a multi-element transducer array for two different plane-wave emission angles. Then, we use our speed estimate to identify the layer thickness via end-of-layer boundary detection. A low-cost alternative that obtains reconstructed images with fewer phase shifts (i.e., fewer complex multiplications) using a spectral energy threshold is also proposed in this thesis. Our evaluation results, based on the CPWC imaging simulation of a three-layer medium, show that our sound speed and layer thickness estimates are within 4% of their true values (i.e., those used to generate simulated data). We have also confirmed the accuracy of our speed and layer thickness estimation separately, using two experimental datasets representing two special cases. For speed estimation, we used a CPWC imaging dataset for a constant-speed (i.e., single-layer) medium, yielding estimates within 1% of their true values. For layer thickness estimation, we used a monostatic (i.e., single-element) synthetic-aperture (SA) imaging dataset of the three-layer medium, also yielding estimates within 1% of their true values. Our evaluation results for the low-cost alternative showed a 93% reduction in complex multiplications for the three-layer CPWC imaging dataset and 76% for the three-layer monostatic SA imaging dataset, producing images nearly similar to those obtained using the original PSM methods. / Graduate

Page generated in 0.4129 seconds