• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation and appraisal of an in-fibre Bragg grating quasi-distributed health and usage monitoring system with applications to advanced materials

O'Dwyer, Martin Joseph January 2000 (has links)
No description available.
2

Post-Processing Method for Determining Peaks in Noisy Strain Gauge Data with a Low Sampling Frequency

Hill, Peter Lee 06 July 2017 (has links)
The Virginia Tech Transportation Institute is recognized for being a pioneer in naturalistic driving studies. These studies determine driving behavior, and its correlation to safety critical events, by equipping participant's vehicles with data acquisition systems and recording them for a period of time. The driver's habits and responses to certain scenarios and events are analyzed to determine trends and opportunities to improve overall driver safety. One of these studies installed strain gauges on the front and rear brake levers of motorcycles to record the frequency and magnitude of brake presses. The recorded data was sampled at 10 hertz and had a significant amount of noise introduced from temperature and electromagnetic interference. This thesis proposes a peak detection algorithm, written in MATLAB, that can parallel process the 40,000 trips recorded in this naturalistic driving study. This algorithm uses an iterative LOWESS regression to eliminate the offset from zero when the strain gauge is not stressed, as well as a cumulative sum and statistical concepts to separate brake activations from the rest of the noisy signal. This algorithm was verified by comparing its brake activation detection to brake activations that were manually identified through video reduction. The algorithm had difficulty in accurately identifying activations in files where the amplitude of the noise was close to the amplitude of the brake activations, but this only described 2% of the sampled data. For the rest of the files, the peak detection algorithm had an accuracy of over 90%. / Master of Science
3

Signal processing and amplifier design for inexpensive genetic analysis instruments

Choi, Sheng Heng 11 1900 (has links)
The Applied Miniaturisation Laboratory (AML) has recently built a laser-induced fluorescent capillary electrophoresis (LIF-CE) genetic analysis instrument, called the Tricorder Tool Kit (TTK). By using a photodiode instead of photomultiplier tubes in the optical detection, the AML has lowered the cost and size compared to commercial LIF-CE products. However, maintaining an adequate signal-to-noise (SNR) and limit of detection (LOD) is a challenge. By implementing a multistage amplifier, we increased the bandwidth and voltage swing while maintaining the transimpedance gain compared to the previous design. We also developed signal processing algorithms for post-experiment processing of CE. Using wavelet transform, iterative polynomial baseline fitting, and Jansson's deconvolution, we improved the SNR, reduced baseline variations, and separated overlapping peaks in CE signals. By improving the electronics and signal processing, we lowered the LOD of the TTK, which is a step towards the realisation of inexpensive point-of-care molecular medical diagnosis instruments. / Computer, Microelectronic Devices, Circuits and Systems
4

The Effect of Peak Detection Algorithms on the Quality of Underwater Laser Ranging

Hung, Chia-Chun 29 July 2004 (has links)
Laser based underwater triangulation ranging is sensitive to the environmental conditions and laser beam profile. Also, its ranging quality is greatly affected by the algorithm choices for peak detection and for image processing. By utilizing the merging least-squares approximation for laser image processing, it indeed succeeds in increasing quality of triangulation ranging in water; however, this result was obtained on the use of a laser beam with nearly circular cross-section. Therefore, by using an ellipse-like laser beam cross-section for range finding, we are really interested in understanding the quality of range finding with different peak detection algorithms. Besides, the ellipse orientation of the laser spot projected on the image plane would be various. We are also interested in learning about the relationship between the ellipse orientation and the quality of range finding. In this study, peak detection algorithms are investigated by considering four different laser beam cross-sections which are ircle, horizontal ellipse, oblique ellipse, and vertical ellipse. First, we employ polynomial regression for processing laser image to study the effect of polynomial degree on quality of triangulation ranging. It was found that the linear regression achieves the best ranging quality than others. Then, according to this result, the ranging quality associated with peak detection is evaluated by employing three different algorithms which are the illumination center, twice illumination center and the illumination center with principal component analysis. We found that the ranging quality by using the illumination center with principal component analysis is the best, next is twice illumination center, and last the illumination center. This result indicates that the orientation of elliptical laser beam has an influential effect on the quality of range finding. In addition, the ranging quality difference among peak detection algorithms is significantly reduced by implementing the merging least-squares approximation rlaser image processing. This result illustrates that the merging least-squares approximation does reduce the effect of peak detection algorithm on the quality of range finding.
5

Automatic Macro- and Micro-Facial Expression Spotting and Applications

Shreve, Matthew Adam 01 January 2013 (has links)
Automatically determining the temporal characteristics of facial expressions has extensive application domains such as human-machine interfaces for emotion recognition, face identification, as well as medical analysis. However, many papers in the literature have not addressed the step of determining when such expressions occur. This dissertation is focused on the problem of automatically segmenting macro- and micro-expressions frames (or retrieving the expression intervals) in video sequences, without the need for training a model on a specific subset of such expressions. The proposed method exploits the non-rigid facial motion that occurs during facial expressions by modeling the strain observed during the elastic deformation of facial skin tissue. The method is capable of spotting both macro expressions which are typically associated with emotions such as happiness, sadness, anger, disgust, and surprise, and rapid micro- expressions which are typically, but not always, associated with semi-suppressed macro-expressions. Additionally, we have used this method to automatically retrieve strain maps generated from peak expressions for human identification. This dissertation also contributes a novel 3-D surface strain estimation algorithm using commodity 3-D sensors aligned with an HD camera. We demonstrate the feasibility of the method, as well as the improvements gained when using 3-D, by providing empirical and quantitative comparisons between 2-D and 3-D strain estimations.
6

Signal processing and amplifier design for inexpensive genetic analysis instruments

Choi, Sheng Heng Unknown Date
No description available.
7

Semi Automated Bullet GroupAnalysis for Shooting Target Training

Machiraju, Naga Kiran January 2018 (has links)
Competitive Shooting as a sport is becoming famous these days and analysis of shooting group or bullet group which is a process of analysis location of bullet holes in one shooting session and stands as a metric for Precision of the weapon, Shooter's Accuracy, his Consistency and helps in finding Accurate load for the Cartridge. Knowledge of these factors can help in improving one's shooting and fine-tuning skills as a Shooter. Bullet group is alsoinuenced by the Accuracy of Rie, Optimal hand load, free run distance, environmental conditions like humidity, temperature, ambient light, windspeed, Shooter's position. Analyzing the Bullet group can be done in various ways, one way of doing it is by taking a Digital Image and analyzing the Image and detecting positions of bullet holes and Calculating metrics from this Metrics like Geometry of bullet group, largest distance between two bullets, compactness of the bullet group on target. In this work, detection of bullet holes is done by using these techniques: Template matching, Histogram equalization, White Balancing, Median andGaussian altering and Peak detection algorithms. After obtaining positions of the bullet holes in the Image. Complete Automation can be done by using the training the Algorithm with a Machine learning framework with the help of Articial neural networks. The existing bullet group analysis software require the bullet group shot on a specifc target, which limits the shooters to shoot on a target of shooter's choice every time and, those targets are not universal and vary from place to place. This algorithm aims to work on various types of target, and taking a step towards making a more generalized and more versatile algorithm.
8

Machine Vision Inspection of the Lapping Process in the Production of Mass Impregnated High Voltage Cables

Nilsson, Jim, Valtersson, Peter January 2018 (has links)
Background. Mass impregnated high voltage cables are used in, for example, submarine electric power transmission. One of the production steps of such cables is the lapping process in which several hundred layers of special purpose paper are wrapped around the conductor of the cable. It is important for the mechanical and electrical properties of the finished cable that the paper is applied correctly, however there currently exists no reliable way of continuously ensuring that the paper is applied correctly. Objective. The objective of this thesis is to develop a prototype of a cost-effective machine vision system which monitors the lapping process and detects and records any errors that may occur during the process; with an accuracy of at least one tenth of a millimetre. Methods. The requirements of the system are specified and suitable hardware is identified. Using a method where the images are projected down to one axis as well as other signal processing methods, the errors are measured. Experiments are performed where the accuracy and performance of the system is tested in a controlled environment. Results. The results show that the system is able to detect and measure errors accurately down to one tenth of a millimetre while operating at a frame rate of 40 frames per second. The hardware cost of the system is less than €200. Conclusions. A cost-effective machine vision system capable of performing measurements accurate down to one tenth of a millimetre can be implemented using the inexpensive Raspberry Pi 3 and Raspberry Pi Camera Module V2. Th
9

DM EMI Noise Analysis for Single Channel and Interleaved Boost PFC in Critical Conduction Mode

Wang, Zijian 11 June 2010 (has links)
The critical conduction mode (CRM) power factor correction converters (PFC) are widely used in industry for low power offline switching mode power supplies. For the CRM PFC, the main advantage is to reduce turn-on loss of the main switch. However, the large inductor current ripple in CRM PFC creates huge DM EMI noise, which requires a big EMI filter. The switching frequency of the CRM PFC is variable in half line cycle which makes the EMI characteristics of the CRM PFC are not clear and have not been carefully investigated. The worst case of the EMI noise, which is the baseline to design the EMI filter, is difficult to be identified. In this paper, an approximate mathematical EMI noise model based on the investigation of the principle of the quasi-peak detection is proposed to predict the DM EMI noise of the CRM PFC. The developed prediction method is verified by measurement results and the predicted DM EMI noise is good to evaluate the EMI performance. Based on the noise prediction, the worst case analysis of the DM EMI noise in the CRM PFC is applied and the worst case can be found at some line and load condition, which will be a great help to the EMI filter design and meanwhile leave an opportunity for the optimization of the whole converter design. What is more, the worst case analysis can be extended to 2-channel interleaved CRM PFC and some interesting characteristics can be observed. For example, the great EMI performance improvement through ripple current cancellation in traditional constant frequency PFC by using interleaving techniques will not directly apply to the CRM PFC due to its variable switching frequency. More research needs to be done to abstract some design criteria for the boost inductor and EMI filter in the interleaved CRM PFC. / Master of Science
10

Lateral Position Detection Using a Vehicle-Mounted Camera

Ågren, Elisabeth January 2003 (has links)
<p>A complete prototype system for measuring vehicle lateral position has been set up during the course of this master’s thesis project. In the development of the software, images acquired from a back-ward looking video camera mounted on the roof of the vehicle were used. </p><p>The problem of using computer vision to measure lateral position can be divided into road marking detection and lateral position extraction. Since the strongest characteristic of a road marking image are the edges of the road markings, the road marking detection step is based on edge detection. For the detection of the straight edge lines a Hough based method was chosen. Due to peak spreading in Hough space, the difficulty of detecting the correct peak in Hough space was encountered. A flexible Hough peak detection algorithm was developed based on an adaptive window that takes peak spreading into account. The road marking candidate found by the system is verified before the lateral position data is generated. A good performance of the road marking tracking algorithm was obtained by exploiting temporal correlation to update a search region within the image. A camera calibration made the extraction of real-world lateral position information and yaw angle data possible. </p><p>This vision-based method proved to be very accurate. The standard deviation of the error in the position detection is 0.012 m within an operating range of ±2 m from the image centre. During continuous road markings the rate of valid data is on average 96 %, whereas it drops to around 56 % for sections with intermittent road markings. The system performs well during lane change manoeuvres, which is an indication that the system tracks the correct road marking. This prototype system is a robust and automatic measurement system, which will benefit VTI in its many driving behaviour research programs.</p>

Page generated in 0.1091 seconds