• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 380
  • 52
  • 14
  • 8
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 465
  • 246
  • 239
  • 238
  • 164
  • 154
  • 122
  • 95
  • 93
  • 84
  • 84
  • 84
  • 84
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Le bassin des Volta, Afrique de l'Ouest : une marge passive, d'âge protérozoïque supérieur, tectonisée au Panafricain, 600 ̲+50 Ma /

Affaton, Pascal, January 1990 (has links)
Th. Doct. sci.--Géologie--Aix-Marseille 3, 1987. / Bibliogr. p. 257-288. Index.
62

Stratigraphy, ichnology, and sedimentary environments of the Late Bajocian, Late Bathonian Kashafrud Formation, Northeastern Iran

Taheri, Jafar. Unknown Date (has links) (PDF)
Univ., Diss., 2009--Würzburg.
63

Fréquence passée des feux et successions végétales dans les tourbières ombrotrophes près de Radisson, Québec nordique /

Magnan, Gabriel. January 2009 (has links) (PDF)
Thèse (M.Sc.Geogr.) -- Université Laval, 2009. / Bibliogr.: f. [73]-80. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
64

Évolution postglaciaire et holocène de la vallée de la rivière Pachiskw, Québec subarctique : géomorphologie, stratigraphie et paléoécologie /

Drouin, Jonathan. January 2004 (has links)
Thèse (M.Sc.)--Université Laval, 2004. / Bibliogr.: f. 70-74. Publié aussi en version électronique.
65

Les Gisements d'uranium du Gabon et les réacteurs d'Oklo : modèle métallogénique de gîtes à forte teneurs du Protérozoïque inférieur /

Gauthier-Lafaye, François, January 1986 (has links)
Th.--Sc.--Strasbourg, 1986. / Bibliogr. p. 193-200.
66

Structure et évolution alpine des massifs paléozoïques du Labourd, Pays basque français /

Richard, Philippe, January 1987 (has links)
Th. univ.--Sciences de la Terre--Orléans, 1986. / Bibliogr. p. 353-367.
67

Les variations du niveau marin sur le bassin de Paris au bathonien-callovien : impacts sur les communautés benthiques et sur l'évolution des ornithellidés (Terebratellinida) /

Garcia, Jean-Pierre, January 1993 (has links)
Th. Univ.--Géol.--Dijon, 1992. / Résumé en français et en anglais. bibliogr. p. 291-302.
68

The stratigraphy, sedimentology, and age of the Late Palaeozoic Mesosaurus Inland Sea, SW-Gondwana : new implications from studies on sediments and altered pyroclastic layers of the Dwyka and Ecca Group (lower Karoo Supergroup) in southern Namibia / Stratigraphie, Sedimentologie und Alter des spätpaläozoischen Mesosaurus-Inlandmeeres: neue Ergebnisse von Studien an Sedimenten und alterierten Pyroklastika der Dwyka und Ecca Gruppe (untere Karoo Supergruppe) im südlichen Namibia

Werner, Mario January 2006 (has links) (PDF)
The Mesosaurus Inland Sea covered, in the Late Paleozoic, vast areas (~5 Mio km2) of the SW-Gondwanan continental interior. Major depocentres are represented by the Karoo basins of SW-Africa and the Paraná Basin in South America. These areas were interconnected prior to the break-up of Gondwana and the subsequent opening of the South Atlantic Ocean. In Namibia and South Africa deposits of the Mesosaurus Inland Sea are preserved in the successions of the glacial Dwyka Group and the postglacial Ecca Group (Karoo Supergroup). These deposits comprise the major part of a 60-70 Ma depositional cycle and are the main focus of this study. The large-scale transgressive part of this cycle started in the Late Carboniferous with continental glacial deposits followed by marine glacial and postglacial inland sea deposits. During the Early Permian the Mesosaurus Inland Sea reached its greatest extent, which was accompanied by widespread deposition of Corg-rich sediments. The large scale regressive part is recorded by successions ranging from deep water offshore pelites and turbidite sandstones to shallow water shoreface and deltaic sandstones, deposited in a brackish environment. Shallow water inland sea sediments are in turn overlain by fluvio-lacustrine deposits, which are assigned to the Beaufort Group and form the upper part of the cycle. This successive change in the depositional environment from marine to brackish to freshwater is also reflected in the fossil record. During Dwyka times a marine association of the Gondwana faunal province was able to colonize parts of the Mesosaurus Inland Sea. Later, during lower Ecca times, the connection to the Panthalassan Ocean became insufficient to retain normal marine conditions, leading to strong faunal endemism in an isolated and brackish inland sea environ¬ment. The most well-known and widespread representatives of this endemic fauna are mesosaurid vertebrates and megadesmid bivalves. Numerous altered tuffs occur as interlayers within argillaceous sediments of the Dwyka and Ecca Group of southern Namibia. The vast majority of these altered tuffs are represented by soft and crumbly to hard and indurated, clay-mineral-rich, bentonitic layers. Another, much rarer type is represented by very hard, chert-like tuff layers, which are predominantly albitic in composition. Furthermore, tuff layers within the Gai-As Formation of the Huab area are rich in potassium feldspar and have a porcelain-like appearance. The diagenetically modified matrix is mainly crypto- to microcrystalline. Polished tuff specimen show, in some tuffs, plane lamination or bedding with two or more subunits forming a tuff layer. Some display a weakly developed lamination. Only in very rare cases were structures reminiscent of sedimentary micro-cross lamination observed. The sedimentary textures and structures of the tuffs indicate that they have been deposited mainly as distal ash-fall layers by suspension settling in water. Some may have also been deposited or modified under the influence of weak bottom currents. The primary, pyroclastic macro-components of the tuffs are mainly represented by crystals of quartz, plagio¬clase, and biotite. In some thin sections pseudo¬morphs after pyroxene or hornblende were observed. Euhedral zircon and apatite crystals were observed in almost every tuff. Vitric or formerly vitric macro-components are very rare. The matrix of the majority of the investigated tuffs is predominantly composed of clay minerals. However, the matrix of the tuffs originally consisted most probably of fine vitric ash particles. Soon after deposition the volcanic ash was diagenetically altered to smectitic clay minerals. At a later stage smectite was progressively replaced by illite under prograde conditions. Nowadays the matrix of the bentonitic tuffs is strongly illite-dominated and only in the softer tuff layers a minor smectite content can be detected. Both the primary macrocrystic components as well as the geochemistry of the altered tuffs indicate that their source magmas were mainly of intermediate composition. The abundance of splintery quartz and feldspar crystal fragments within the tuffs hints at a highly explosive plinian or phreatoplinian eruption style of the source volcanoes, which were most probably located within a subduction-related volcanic arc region along the southern margin of Gondwana. New single zircon U-Pb SHRIMP datings of tuff layers provide a much more reliable age control of the investigated sedimentary succession. U-Pb SHRIMP ages for tuff layers from the glaciogenic Dwyka Group in southwestern Africa range from 302.0 ± 3.0 to 297.1 ± 1.8 Ma. The basal part of the early post-glacial Prince Albert Formation is dated at around 290 Ma. SHRIMP ages for tuff layers from the upper part of the Prince Albert Formation, the Whitehill Formation, and the middle part of the Collingham Formation indicate that the Mesosaurus Sea reached its greatest extent at around 280 Ma. / Während des Spätpaläozoikums waren riesige Areale (~5 Mio km2) Südwest-Gondwanas vom Mesosaurus Inlandmeer bedeckt. Die Karoo Becken Südwest-Afrikas sowie das Paraná Becken Südamerikas stellen dabei die Hauptablagerungsbereiche dar. Diese Gebiete waren vor dem Auseinanderbrechen Gondwanas und der darauf folgenden Öffnung des Südatlantiks miteinander verbunden. In Namibia und Südafrika sind die Ablagerungen des Mesosaurus Inlandmeeres in den Abfolgen der glazialen Dwyka Gruppe und der postglazialen Ecca Gruppe überliefert. Diese Sedimente umfassen den größten Teil eines etwa 60-70 Ma langen Ablagerungszyklus. Der transgressive Teil dieses Zyklus begann im späten Karbon mit der Ablagerung von kontinentalen Glazialsedimenten, auf die marine Glazial- und Post-Glazialablagerungen des Mesosaurus Inlandmeeres folgten. Während des frühen Perms erreichte dieses Inlandmeer seine größte Ausdehnung. Der regressive Teil ist durch Abfolgen gekennzeichnet, die von Tiefsee-Peliten und Turbiditen zu Küsten- und Delta-Sandsteinen reichen, welche in einem brackischem Milieu abgelagert wurden. Auf die Flachwasser-Sedimente dieses Inlandmeeres folgen fluvial-lakustrine Ablagerungen, die in die Beaufort Gruppe gestellt werden und die den oberen Teil des Ablagerungszyklus bilden. Diese Wechsel in den Ablagerungsmilieus von Salzwasser über Brackwasser zu Süßwasser spiegeln sich auch in den Fossilfunden wider. Zur Zeit der Dwyka konnten marine Vertreter der Gondwana-Faunenprovinz Teile des Mesosaurus Inlandmeeres besiedeln. Später, während der frühen Ecca-Zeit, konnten die marinen Bedingungen aufgrund der stark eingeschränkten Verbindung zum Panthalassischen Ozean nicht aufrecht erhalten werden, was schließlich zu einem ausgeprägten Faunen-Endemismus in einem nahezu abgeschnittenen Brackwasser-Inlandmeer führte. Die bekanntesten Vertreter dieser endemischen Fauna sind mesosauride Wirbeltiere und megadesmide Muscheln. In der Dwyka und Ecca Gruppe treten im südlichen Namibia zahlreiche alterierte Tuffe als Zwischenlagen auf. Die überwiegende Anzahl dieser Tuffe bilden tonmineralreiche, bentonitische Lagen. Sie können sowohl weich und bröckelig als auch stärker verfestigt und härter ausgebildet sein. Ein viel seltenerer Typ ist durch harte, chert-artige, albitische Tufflagen gekennzeichnet. Desweiteren treten in der Gai-As Formation des Huab Gebietes porzellanartige, weiße Tufflagen auf, die reich an Kalifeldspat sind. Die diagenetisch veränderte Matrix der Tuffe ist hauptsächlich krypto- bis mikrokristallin. Polierte Handstücke lassen in einigen Fällen Horizontal-Schichtung oder eine oft undeutliche Lamination erkennen. Die Sedimentgefüge der Tuffe lassen darauf schliessen, daß diese hauptsächlich subaquatische Suspensionsablagerungen distalen Aschenfalls darstellen. Einige wenige können auch unter dem Einfluss schwacher Bodenströmungen ab- oder umgelagert worden sein. Quarz-, Plagioklas- und Biotitkristalle bilden den Hauptteil der primären, pyroklastischen Makrokomponenten der Tuffe. In einigen Dünnschliffen konnten auch Pseudomorphosen nach Pyroxen oder Hornblende beobachtet werden. Idiomorphe Zirkon- und Apatitkristalle wurden in nahezu jedem Tuff beobachtet. Glasige oder entglaste Makrokomponenten sind dagegen sehr selten. Die Matrix der meisten untersuchten Tuffe ist überwiegend aus Tonmineralen aufgebaut. Ursprünglich setzte sich die Matrix der Tuffe jedoch wahrscheinlich aus feinkörnigen, glasigen Aschenpartikeln zusammen, die schon bald nach Ablagerung diagenetisch zu smektitischen Tonmineralen umgewandelt wurden. Zu einem späteren Zeitpunkt wurde dann Smektit zunehmend von Illit unter höhergradigen Bedingungen verdrängt. Heute ist die Matrix der bentonitischen Tuffe stark Illit-dominiert und nur in den weicheren Tufflagen lassen sich noch geringe Smektitgehalte nachweisen. Sowohl die primär-pyroklastischen Makrokristallkomponenten als auch die Geochemie der alterierten Tuffe weisen darauf hin, daß ihre Ursprungsmagmen hauptsächlich von intermediärer Zusammensetzung waren. Das zahlreiche Auftreten von splittrigen Quarz- und Feldspat-Kristallfragmenten weist auf einen hochexplosiven, plinianischen oder phreatoplinianischen Eruptionsstil der Herkunftsvulkane hin, die höchstwahrscheinlich in einer vulkanischen Bogenregion am Südrand Gondwanas gelegen waren. Neue U-Pb Einzelzirkon SHRIMP-Datierungen von vulkanischen Aschenlagen ermöglichen nun eine wesentlich verlässlichere Alterskontrolle der untersuchten Sedimentabfolge. U-Pb SHRIMP-Alter für Tufflagen aus der glazialgeprägten Dwyka Gruppe aus Südnamibia und SW-Südafrika reichen von 302.0 ± 3.0 to 297.1 ± 1.8 Ma. Der Basalbereich der früh-postglazialen Prince Albert Formation ist auf etwa 290 Ma datiert. SHRIMP-Alter von Tufflagen im oberen Bereich der Prince Albert Formation, innerhalb der Whitehill Formation und im mittleren Teil der Collingham Formation belegen, daß das Mesosaurus Inlandmeer seine größte Ausdehnung vor etwa 280 Ma erreichte.
69

Stratigraphy, ichnology, and sedimentary environments of the Late Bajocian-Late Bathonian Kashafrud Formation, Northeastern Iran / Stratigraphie, Ichnologie, und Ablageruns-Räume des Oberen Bajocian-Obere Bathonian der Kashafrud Formation, Nordost Iran

Taheri, Jafar January 2009 (has links) (PDF)
The Upper Bajocian-Bathonian Kashafrud Formation is a thick package of siliciclastic sediments that crops out in NE Iran from the southeast, near the Afghanistan border, to north- northwestern areas around the city of Mashhad. The thickness ranges from less than 300 m in a deltaic succession (Kuh-e-Radar) to more than 2500 m in the Maiamay area, but the normal thickness in Ghal-e-Sangi, Kol-e-Malekabad, and Fraizi areas is about 1200-1300 m. It is the fill of an elongated basin, which extended for more than 200 km in NW-SE direction and a width of at least 50 km along the southern margin of the Koppeh Dagh. Prior to this study, little information existed about the sedimentary environments and other characters, especially the geometry of the basin. Exact biostratigraphic data from the top of the Kashafrud Formation were rare. Based on the macrofauna from the lower part of the overlying Chamanbid Formation the upper boundary of the Kashafrud Formation had been attributed to the Late Bathonian and/or Early Callovian, but now the upper limit of the Kashafrud Formation is defined as Late Bathonian in age, based on ammonite biostratigraphy. Except for chapter one, which deals with the introduction and related sub-titles, in the following chapters, step by step, field observations and data were surveyed according to the questions to solve. In order to reconstruct the facies architecture and the geometry of the basin, a number of sections have been logged in detail (see chapter 3, “The sections”). The exact biostratigraphic setting is discussed in chapter 4 (“Biostratigraphy”). Sedimentary environments range from non-marine alluvial fans and braided rivers in the basal part of the succession to deltas, storm-dominated shelf, slope and deep-marine basin. The latter comprises the largest part of the basin fill, consisting of monotonous mudstones, siltstones and proximal to distal turbidities. The only continuous carbonate unit (~30 m) locally formed at Tappenader. Other localities in which thin fossil-bearing carbonate strata occur are Torbat-e-Jam (benthic fauna) and, to a lesser extent, Ghal-e-Sangi. These rare shallow-water carbonates, which also contain corals, represent only short intervals (see chapter 5,” Facies association and sedimentary environments”). Relative changes in sea level were reconstructed on the basis of deepening- and shallowing-upward trends. Sequence boundaries and parasequences have been distinguished and analyzed in chapter 6 (“Sequence stratigraphy”). In most areas, the basin rapidly evolved from a shallow marine, transgressive succession to a deep-marine, basinal succession. The only area where shallow conditions persisted from the Late Bajocian to the Late Bathonian, and even into the Early Callovian is the Kuh-e-Radar area which corresponds to a fan-delta setting. A trace fossil analysis has been carried out to obtain additional evidence on the bathymetry of the basin (see chapter 7, “Ichnology”). Altogether 29 ichnospecies belonging to 15 ichnogenera have been identified, as well as 10 ichnogenera, which were determined only at genus level. They can be grouped in the well-known “Seilacherian ichnofacies”. Very high subsidence rates and strong lateral thickness variations suggest that the Kashafrud Formation is a rift related basin that formed as the eastern extension of the South Caspian Basin. The basin evolution is reviewed, the eastern and western continuations of the basin were checked in the field and also in the literature (see chapter 8, “Basin evolution”). In all, the present study provided new insights into the development of the Kashafrud Formation, e.g. more biostratigraphic data from the base and the top of the succession, a relatively complete picture of the trace fossil associations, a better recognition and reconstruction of the sedimentary environments in different parts of the basin. Finally this research project will be a good basis for further investigations, especially towards the west, as parts of the Kashafrud Formation are source rocks of a hydrocarbon reservoir in NE Iran.
70

Les chaînes subalpines entre Gap et Digne : contribution à l'histoire géologique des Alpes françaises

Haug, Emile 02 September 1891 (has links) (PDF)
Description stratigraphique de la région des Alpes du Sud.

Page generated in 0.0617 seconds