Spelling suggestions: "subject:"stream vortices""
1 |
Streamwise Vortices in a Convex Wall JetPANDEY, ANSHUMAN 02 October 2019 (has links)
No description available.
|
2 |
PARAMETERS GOVERNING SEPARATION CONTROL WITH SWEEPING JET ACTUATORSWoszidlo, Rene, Woszidlo, Rene January 2011 (has links)
Parameters governing separation control with sweeping jet actuators over a deflected flap are investigated experimentally on a generic "Multiple Flap Airfoil" (MFA). The model enables an extensive variation of geometric and aerodynamic parameters to aid the scaling of this novel flow control method to full-size applications.Sweeping jets exit from discrete, millimeter-scale nozzles distributed along the span and oscillate from side-to-side. The sweeping frequency is almost linearly dependent on the supplied flowrate per actuator. The measured thrust exerted by a row of actuators agrees well with vectored momentum calculations. Frequency and thrust measurements suggest that the jet velocity is limited to subsonic speeds and that any additional increase in flowrate causes internal choking of the flow.Neither the flowrate nor the momentum input is found to be a sole parameter governing the lift for varying distance between adjacent actuators. However, the product of the mass flow coefficient and the square root of the momentum coefficient collapses the lift onto a single curve regardless of the actuator spacing. Contrary to other actuation methods, separation control with sweeping jets does not exhibit any hysteresis with either momentum input or flap deflection. A comparison between sweeping and non-sweeping jets illustrates the superior control authority provided by sweeping jets. Surface flow visualization on the flap suggests the formation of counter-rotating pairs of streamwise vortices caused by the interaction of neighboring jets.The actuation intensity required to attach the flow increases with increasing downstream distance from the main element's trailing edge and increasing flap deflection. No obvious dependence of the ideal actuation location on actuator spacing, flap deflection, angle of attack, or actuation intensity is found within the tested range. Comparisons between experimental and numerical results reveal that the inviscid flow solution appears to be a suitable predictor for the effectively and efficiently obtainable lift of a given airfoil configuration. The flap size affects the achievable lift, the accompanying drag, and the required flap deflection and actuation intensity. By controlling separation, the range of achievable lift coefficients is doubled without significant penalty in drag even when considering a safety margin for the maximum applicable incidence.
|
3 |
Experiments on the Late Stages of Boundary Layer TransitionManu, K V January 2013 (has links) (PDF)
In canonical boundary layer transition, a uniform laminar flow perturbed by 2-d T-S waves develops downstream into 3-d waves, which eventually break down with turbulent spots appearing. Previous experimental studies have established that this kind of development is absent, is by-passed, in transition induced by free-stream turbulence or surface roughness. However a common, characteristic feature of the late, three-dimensional stage is the prevalence of streamwise vorticity and streaks. Isolated and multiple streamwise vortices are present in both, canonical transition and bypass transition. This thesis de-scribes an experimental study of the late stages of boundary layer transition after a single or a pair of streamwise vortices have formed. The present work can be considered both as a study of transition induced by surface roughness and as a study of the late stages of transition in general.
The experiments were made on a zero-pressure-gradient boundary layer in a low speed wind tunnel. Various hill configurations, mounted on a flat plate, were used to create isolated and multiple streamwise vortices. Particle image velocimetry (PIV) and hot-wire anemometry used for measurements. Numerical simulations of the initial laminar stage were carried out to understand the vortex formation at the edge of the hills. Computations have shown that the streamwise vorticity induced by the spanwise asymmetry of the hill rolls up into a single streamwise vortex. The streamwise vortex causes high speed fluid to be brought close to the wall and low speed fluid to move away. In turn, streamwise velocity profiles acquire inflections in both the spanwise and wall-normal directions. Previous studies have concluded that the inviscid instability of inflectional profiles are essential, or at least common, precursors to transition. Another view of the structure of bypass transition induced involves a secondary instability of streaks that can be sinuous or varicose. These two types follow from instabilities of the inflectional spanwise and wall-normal profiles of the streamwise velocity, respectively. However the present study confirms that the occurrence of inflections is not sufficient for transition.
The first series of experiments were with smooth Gaussian shaped hills that spanned one-half of the tunnel. Two hill shapes were taken, steep and shallow. Isolated streamwise vortices formed by the side of the hill. Hill heights were less than that of the incoming boundary layer, and they were mounted within the subcritical part of the boundary layer. At low free stream speeds, streaks formed, with inflectional wall-normal and spanwise velocity profiles, but without effecting transition. The necessary conditions for inviscid instability Rayleigh’s inflexion-point theorem and Fjortoft’s theorem are satisfied for these low-speed non-transitional cases. Transition observed at higher speeds show two kinds of development. With the steep hill, the streamwise vortex is not too close to the plate and it exhibits oscillations over some distance before flow breaks down to turbulence; streamwise velocity signals exhibited the passage of a wave packet which intensified before break-down to turbulence. This dominant mode persists far downstream from the hill even while the flow breaks down and frequency content grows over a range of scales. With the shallow hill, the breakdown develops continuously without such a precursor stage; there was a broad range of frequencies present immediately downstream of the hill. For the steep hill the maximum fluctuation is observed on the upwash side of the vortex. With the shallow hill, the fluctuation level is maximum at the location between low and high speed streak.
Features of breakdown to transition caused by these single streamwise vortices are found to be similar to those in transition by other causes such as surface roughness, freestream turbulence etc. With the steep hill, the growth of fluctuations(urms, the peak levels of streamwise velocity component fluctuations) is remarkably similar to that in the K-type transition. Unlike in freestream induced transition, the initial growth of u2 rms,max with downstream distance was not linear. Profiles of urms/urms,max vs. y/δ∗where δ∗,is the displacement thickness is partially matching with the optimal disturbances, for the steep hill case. The phase velocity matches as in previous measurements of roughness induced transition. The flow exhibits the breakup of a shear layer near the outer edge of the boundary layer into successive vortices. This breakdown pattern resembles to those in the recent numerical simulations. The passing frequency of these vortices scales with freestream velocity, similar to that in single-roughness induced transition. Quadrant analysis of streamwise and wall-normal velocity fluctuations show large ejection events in the outer layer.
The difference in the route to transition between the steep and shallow hills was considered to the relative proximity of the initial streamwise vortex to the flat plate and its interaction with the wall. To examine this conjecture, two configurations were prepared to produce two types of counter-rotating streamwise vortices. One is a hill that span the tunnel except for a short gap, and the other, its complement, is a short span hill. The short-gap hill produce a pair of vortices with the common flow directed away from the wall. This resulted in a separation bubble that formed a short distance downstream and breakdown to turbulence. The short-span hill configuration seems to have a stabilizing effect. With the short gap hill, transition occurs for lower freestream speeds than with the isolated vortices considered before. Also, the breakdown location is further downstream when the gap is larger. The initial velocity profiles look similar for transitional and non-transitional flow cases, and are inflectional, which clearly indicates that inflectional instabilities are not effective here. A separation index was computed to identify unsteadiness of the separated flow region. The separation is itself steady, where as the reattachment is unsteady. Fluctuations grow near this reattachment zone. The unsteadiness of the reattachment coexists with the appearance of strong fluctuations and transition. It is likely that the this last stage of breakdown results when the shear layer, lifted up by the separation bubble, breaks down near the edge of the boundary layer and the consequent unsteadiness is in the reattachment also. Coherent cat’s-eye-like patterns were observed in a longitudinal, plane normal to the wall. With isolated vortices sinuous oscillations and with stream-wise vortex pairs varicose oscillations were observed in wall-parallel planes. In both cases passing frequency of these vortices scales with freestream velocity. Λ-type vortices were identified in spanwise plane with counter-rotating legs.
These experiments have identified some possible roles of streamwise vortices in the last stages of boundary layer transition. Vortices may undergo their own instability in the background shear layer, evident as oscillations, if they are not too close to the wall. Otherwise the breakdown is without such a stage. Wall interaction of these vortices seems to be a necessary last stage. Inflectional instability is not indicated. Wall interaction that results in separation results in break-down in the unsteady reattachment zone. Breakdown coexists with the reattachment and not at separation, even though it may be the separating shear layer that breaks down.
|
4 |
Amplification of Streamwise Vortices Across a Separated Region at Mach 6Lauren Nicole Wagner (12310118) 01 June 2022 (has links)
A series of experiments were carried out in Purdue University’s Boeing/AFOSR Mach6 Quiet Tunnel, to understand the amplification of streamwise vortices across a separated
region in a quiet flow regime. Streamwise vortices were induced on the upstream end of
an axisymmetric model consisting of a 7-degree half-angle cone, a cylinder, and a 10-degree
flare. The instabilities were seeded using a pre-existing set of roughness inserts, with small,
discrete roughness elements. The elements varied in spacing, height, and number of elements.
The model was aligned to near 0.0 degree angle of attack. <div><br></div><div>The streamwise, Gortler-like instabilities travelled across the separated region onto the
flare, where they were measured with pressure transducers and infrared thermography. The
amplification of the instabilities was measured at a variety of Reynolds numbers, under both
quiet and conventional noise flow. The results were compared to those of a smooth insert.
Heat transfer results showed a streaking pattern, with a peak in heating visible in the streak.
Heat flux increased linearly with Reynolds number. If transition was induced, the heat flux
would begin to decrease. Power spectral density measurements of the pressure fluctuations
indicated that the region within the streak contained two notable instabilities, one between
70 and 150 kHz, and one between 200 and 250 kHz. Transition was only measured in the
spectral content in the region on the flare where a ”filling in” of streaks was visible in heat
transfer results. Heat flux increased in an nonlinear manner with increasing roughness height. </div><div><br></div><div>The streak positioning and peak heat flux showed a high sensitivity to small, uncontrollable changes in run conditions throughout. Heat transfer results were largely repeatable
for small angles of attack, less than 0.1 degrees. The streaks shifted slightly in width and
position for angles of attack near 0.1 degrees. Small changes in the streak positioning and
heat transfer magnitude were seen in repeatability runs; this is mostly attributable to small
changes in initial run conditions. </div>
|
Page generated in 0.0868 seconds