1 |
Mechanical Flow Response and Anisotropy of Ultra-Fine Grained Magnesium and Zinc AlloysAl Maharbi, Majid H. 2009 December 1900 (has links)
Hexagonal closed packed (hcp) materials, in contrast to cubic materials, possess
several processing challenges due to their anisotropic structural response, the wide
variety of deformation textures they exhibit, and limited ductility at room temperature.
The aim of this work is to investigate, both experimentally and theoretically, the effect
os severe plastic deformation, ultrafine grain sizes, crystallographic textures and number
of phases on the flow stress anisotropy and tension compression asymmetry, and the
mechanisms responsible for these phenomena in two hcp materials: AZ31B Mg alloy
consisting of one phase and Zn-8wt.% Al that has an hcp matrix with a secondary facecentered
cubic (fcc) phase. Mg and its alloys have high specific strength that can
potentially meet the high demand for light weight structural materials and low fuelconsumption
in transportation. Zn-Al alloys, on the other hand, can be potential
substitutes for several ferrous and non-ferrous materials because of their good
mechanical and tribological properties. Both alloys have been successfully processed
using equal channel angular extrusion (ECAE) following different processing routes in order to produce samples with a wide variety of microstructures and crystallographic
textures for revealing the relationship between microstructural parameters,
crystallographic texture and resulting flow stress anisotropy at room temperature. For
AZ31B Mg alloy, the texture evolution during ECAE following conventional and hybrid
ECAE routes was successfully predicted using visco-plastic self-consistent (VPSC)
crystal plasticity model. The flow stress anisotropy and tension-compression (T/C)
asymmetry of the as received and processed samples at room temperature were
measured and predicted using the same VPSC model coupled with a dislocation-based
hardening scheme. The governing mechanisms behind these phenomena are revealed as
functions of grains size and crystallographic texture. It was found that the variation in
flow stress anisotropy and T/C asymmetry among samples can be explained based on the
texture that is generated after each processing path. Therefore, it is possible to control
the flow anisotropy and T/C asymmetry in this alloy and similar Mg alloys by
controlling the processing route and number of passes, and the selection of processing
conditions can be optimized using VPSC simulations. In Zn-8wt.% Al alloy, the hard
phase size, morphology, and distribution were found to control the anisotropy in the flow
strength and elongation to failure of the ECAE processed samples.
|
2 |
TUNNEL BEHAVIOR UNDER COMPLEX ANISOTROPIC CONDITIONSOsvaldo Paiva Maga Vitali (8842580) 15 May 2020 (has links)
Rock masses may present
remarked geostatic stress anisotropy and anisotropic material properties; thus,
the tunnel alignment with the geostatic principal stress directions and with
the axes of material anisotropy is unlikely. Nevertheless, tunnel design often
neglects those misalignments and; yet, the misalignment effects were unknown.
In this doctoral research, tunnels under complex anisotropic conditions were
modelled analytically and numerically with 3D nonlinear Finite Element Method
(FEM). When the tunnel misaligns with the geostatic principal stress
directions, anti-symmetric axial displacements and shear stresses are induced
around the tunnel. Analytical solutions for misaligned shallow and deep tunnels
in isotropic elastic ground are provided. The analytical solutions were
validated with 3D FEM analyses. Near the face, the anti-symmetric axial
displacements are partially constrained by the tunnel face, producing
asymmetric radial displacements and stresses. The asymmetric radial
displacements at the face can be divided into a rigid body displacement of the
tunnel cross-section and anti-symmetric radial displacements. Those asymmetries
may affect the rock-support interaction and the plastic zone developed around
the tunnel. In anisotropic rock masses, the tunnel misalignment with the axes
of material anisotropy also produces anti-symmetric axial displacements and
stresses around the tunnel. It occurs because when the tunnel is not aligned
with the principal material directions, the in-plane stresses are coupled with
the axial displacements (i.e. the compliance matrix is fully populated). Thus,
tunnels in anisotropic rock mass not aligned with the geostatic principal
stresses and with the axes of material anisotropy are substantially more
complex than tunnels not aligned with the principal stress directions in
isotropic rock mass. An analytical solution for misaligned tunnels in
anisotropic rock mass is provided. It was observed that the relative
orientation of the geostatic principal stresses with respect to the axes of
material anisotropy plays an important role. The axial displacements produced
by far-field axial shear stresses and by the rock mass anisotropy may
compensate each other; thus, axial and radial displacements around the tunnel
are reduced. On the other hand, those anti-symmetric axial displacements may be
amplified; thus, the ground deformations are increased. Asymmetric radial and
axial deformations, and asymmetric spalling of the tunnel walls are commonly
observed on tunnels in anisotropic rock masses. The tunnel misalignment with
the geostatic principal stress directions and with the axes of material
anisotropy could be associated with those phenomena that, so far, are not well
comprehended
|
Page generated in 0.0677 seconds