Spelling suggestions: "subject:"streuamplituden"" "subject:"stromamplitude""
1 |
Soft diffractive high energy scattering and form factors in nonperturbative QCDPaulus, Timo. January 2002 (has links)
Heidelberg, University, Diss., 2002.
|
2 |
Semiclassical asymptotics for the scattering amplitude in the presence of focal points at infinityHohberger, Horst January 2006 (has links)
We consider scattering in $R^n$, $nge 2$, described by the Schr"odinger operator $P(h)=-h^2Delta+V$, where $V$ is a short-range potential. With the aid of Maslov theory, we give a geometrical formula for the semiclassical asymptotics as $hto 0$ of the scattering amplitude $f(omega_-,omega_+;lambda,h)$ $omega_+neqomega_-$) which remains valid in the presence of focal points at infinity (caustics). Crucial for this analysis are precise estimates on the asymptotics of the classical phase trajectories and the relationship between caustics in euclidean phase space and caustics
at infinity. / Wir betrachten Streuung in $R^n$, $nge 2$, beschrieben durch den Schr"odinger operator $P(h)=-h^2Delta+V$, wo $V$ ein kurzreichweitiges Potential ist. Mit Hilfe von Maslov Theorie erhalten wir eine geometrische Formel fuer die semiklassische Asymptotik ($hto 0$) der Streuamplitude $f(omega_-,omega_+;lambda,h)$
($omega_+neqomega_-$) welche auch bei Vorhandensein von Fokalpunkten bei Unendlich (Kaustiken) gueltig bleibt.
|
3 |
Supersymmetry of scattering amplitudes and green functions in perturbation theoryReuter, Jürgen. Unknown Date (has links) (PDF)
Techn. University, Diss., 2002--Darmstadt.
|
Page generated in 0.0572 seconds