• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Soft diffractive high energy scattering and form factors in nonperturbative QCD

Paulus, Timo. January 2002 (has links)
Heidelberg, University, Diss., 2002.
2

Semiclassical asymptotics for the scattering amplitude in the presence of focal points at infinity

Hohberger, Horst January 2006 (has links)
We consider scattering in $R^n$, $nge 2$, described by the Schr"odinger operator $P(h)=-h^2Delta+V$, where $V$ is a short-range potential. With the aid of Maslov theory, we give a geometrical formula for the semiclassical asymptotics as $hto 0$ of the scattering amplitude $f(omega_-,omega_+;lambda,h)$ $omega_+neqomega_-$) which remains valid in the presence of focal points at infinity (caustics). Crucial for this analysis are precise estimates on the asymptotics of the classical phase trajectories and the relationship between caustics in euclidean phase space and caustics at infinity. / Wir betrachten Streuung in $R^n$, $nge 2$, beschrieben durch den Schr"odinger operator $P(h)=-h^2Delta+V$, wo $V$ ein kurzreichweitiges Potential ist. Mit Hilfe von Maslov Theorie erhalten wir eine geometrische Formel fuer die semiklassische Asymptotik ($hto 0$) der Streuamplitude $f(omega_-,omega_+;lambda,h)$ ($omega_+neqomega_-$) welche auch bei Vorhandensein von Fokalpunkten bei Unendlich (Kaustiken) gueltig bleibt.
3

Supersymmetry of scattering amplitudes and green functions in perturbation theory

Reuter, Jürgen. Unknown Date (has links) (PDF)
Techn. University, Diss., 2002--Darmstadt.

Page generated in 0.0572 seconds