• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural Analysis and a Kink Band Model for the Formation of the Gemini Fault Zone, an Exhumed Left-Lateral Strike Slip Fault Zone in the Central Sierra Nevada, California

Pachell, Matthew A. 01 May 2001 (has links)
The structure and regional tectonic setting of an exhumed, 9.3-km long, left-lateral strike-slip fault zone eludicates processes of growth, linkage, and termination for strike-slip fault zones in granitic rocks. The Gemini fault zone is composed of three steeply dipping, southwest-striking, noncoplanar segments that nucleated and grew along preexisting joints. The fault zone has a maximum slip of 131 m and is an example of a segmented, hard-linked fault zone in which geometrical complexities of the faults and compositional variations of protolith and host rock resulted in nonuniform slip orientations, complex interactions at fault segments, and an asymmetric slip-distance profile. Regional structural analysis shows that joints and left-lateral fault zones have accommodated slip within a 4.8-km wide, right-lateral monoclinical kink band with vertical fold axes and northwest-striking axial surfaces. Geometric modeling of the kink band indicates that as little as 1.1 km of right-lateral displacement across the kink band may have produced the observed slip on kilometer-scale faults within the kink band.
2

Remote Sensing Study Of Surgu Fault Zone

Koc, Ayten 01 September 2005 (has links) (PDF)
The geometry, deformation mechanism and kinematics of the S&uuml / rg&uuml / Fault Zone is investigated by using remotely sensed data including Landsat TM and ASTER imagery combined with SRTM, and stereo-aerial photographs. They are used to extract information related to regional lineaments and tectono-morphological characteristics of the SFZ. Various image processing and enhancement techniques including contrast enhancement, PCA, DS and color composites are applied on the imagery and three different approaches including manual, semi automatic and automatic lineament extraction methods are followed. Then the lineaments obtained from ASTER and Landsat imagery using manual and automatic methods are overlaid to produce a final lineaments map. The results have indicated that, the total number and length of the lineaments obtained from automatic is more than other methods while the percentages of overlapping lineaments for the manual method is more than the automatic method which indicate that the lineaments from automatic method does not discriminate man made features which result more lineaments and less overlapping ratio with respect to final map. It is revealed from the detail analysis that, the SFZ displays characteristic deformation patterns of strike-slip faults, such as pressure ridges, linear fault controlled valleys, deflected stream courses, rotated blocks and juxtaposition of stratigraphical horizons in macroscopic scale. In addition to these, kinematic analyses carried out using fault slip data indicated that the S&uuml / rg&uuml / Fault Zone is dextral strike-slip fault zone with a reverse component of slip and cumulative displacement along the fault is more than 2 km.

Page generated in 0.0721 seconds