1 |
Machine Learning-Based Ontology Mapping Tool to Enable Interoperability in Coastal Sensor NetworksBheemireddy, Shruthi 11 December 2009 (has links)
In today’s world, ontologies are being widely used for data integration tasks and solving information heterogeneity problems on the web because of their capability in providing explicit meaning to the information. The growing need to resolve the heterogeneities between different information systems within a domain of interest has led to the rapid development of individual ontologies by different organizations. These ontologies designed for a particular task could be a unique representation of their project needs. Thus, integrating distributed and heterogeneous ontologies by finding semantic correspondences between their concepts has become the key point to achieve interoperability among different representations. In this thesis, an advanced instance-based ontology matching algorithm has been proposed to enable data integration tasks in ocean sensor networks, whose data are highly heterogeneous in syntax, structure, and semantics. This provides a solution to the ontology mapping problem in such systems based on machine-learning methods and string-based methods.
|
Page generated in 0.0877 seconds