11 |
U-dualities in Type II string theories and M-theoryMusaev, Edvard T. January 2013 (has links)
In this thesis the recently developed duality covariant approach to string and Mtheory is investigated. In this formalism the U-duality symmetry of M-theory or Tduality symmetry of Type II string theory becomes manifest upon extending coordinates that describe a background. The effective potential of Double Field Theory is formulated only up to a boundary term and thus does not capture possible topological effects that may come from a boundary. By introducing a generalised normal we derive a manifestly duality covariant boundary term that reproduces the known Gibbons-Hawking action of General Relativity, if the section condition is imposed. It is shown that the full potential can be represented as a sum of the scalar potential of gauged supergravity and a topological term that is a full derivative. The latter is written totally in terms of the geometric flux and the non-geometric Q-flux integrated over the doubled torus. Next we show that the Scherk-Schwarz reduction of M-theory extended geometry successfully reproduces known structures of maximal gauged supergravities. Local symmetries of the extended space defined by a generalised Lie derivatives reduce to gauge transformations and lead to the embedding tensor written in terms of twist matrices. The scalar potential of maximal gauged supergravity that follows from the effective potential is shown to be duality invariant with no need of section condition. Instead, this condition, that assures the closure of the algebra of generalised diffeomorphisms, takes the form of the quadratic constraints on the embedding tensor.
|
12 |
On-shell methods in three and six dimensionsKorres, Dimitrios January 2014 (has links)
In the past few years, on-shell analytic methods have played a pivotal role in gauge theory calculations. Since the initial success of these methods in Standard Model physics, considerable activity has led to development and application in supersymmetric gauge theories. In particular, the maximally supersymmetric super Yang-Mills theory received much attention after the discovery of holographic dualities. Here, the spinor helicity formalism and on-shell superspace is described initially for four dimensions. The framework of general unitarity is shown to be a useful tool for calculating loop corrections of scattering amplitudes. Once the foundation is laid, application in three and six dimensions is explored. In six dimensions the case of interest is a theory with (1,1) supersymmetry which captures the dynamics of five-branes in string theory. In this setup the one-loop superamplitude with four and five external particles is calculated and checked for consistency. In three dimensions, the supersymmetric gauge theory that is supposed to describe the dynamics of M2-branes is considered. This particular theory is also related to M-theory via the holographic duality. The goal was to explore and determine the infra-red divergences of the theory. This was achieved by calculating the Sudakov form factor at two loops.
|
13 |
Duality covariant solutions in extended field theoriesRudolph, Felix J. January 2016 (has links)
Double field theory and exceptional field theory are formulations of supergravity that make certain dualities manifest symmetries of the action. To achieve this, the geometry is extended by including dual coordinates corresponding to winding modes of the fundamental objects. This geometrically unifies the spacetime metric and the gauge fields (and their local symmetries) in a generalized geometry. Solutions to these extended field theories take the simple form of waves and monopoles in the extended space. From a supergravity point of view they appear as 1/2 BPS objects such as the string, the membrane and the fivebrane in ordinary spacetime. In this thesis double field theory and exceptional field theory are introduced, solutions to their equations of motion are constructed and their properties are analyzed. Further it is established how isometries in the extended space give rise to duality relations between the supergravity solutions. Extensions to these core ideas include studying Goldstone modes, probing singularities at the core of solutions and localizing them in winding space. The relation of exceptional field theory to F-theory is also covered providing an action for the latter and incorporating the duality between M-theory and F-theory.
|
14 |
Target Space Duality with Dilaton and Tachyon FieldRuszczycki, Blazej 21 December 2007 (has links)
We study the target space duality of classical two dimensional sigma models. The models with dilaton and tachyon field are analyzed. As a motivating example the historical electric-magnetic duality is presented. We review the construction of the duality transformation and the integrability conditions for the nonlinear sigma models with target spaces described by general metrics and antisymmetric two-forms. We generalize the formalism for the models whose actions contain the dilaton and tachyon field. For the dilaton field case it is required that the duality is a property solely of the target manifolds, independent of the world-sheet geometry. For both cases the duality transformation is established and the integrability conditions are calculated. The set of restrictions on geometrical data describing the models is obtained, the previously calculated condition on connections on target spaces is maintained in both cases.
|
15 |
Ramond--Ramond Flux Stabilization of D--BranesJacek Pawelczyk, Soo-Jong Rey, jacek.pawelczyk@physik.uni-muenchen.de 27 October 2000 (has links)
No description available.
|
16 |
Twisted strings, vertex operators and algebrasHollowood, Timothy James January 1988 (has links)
This work is principally concerned with the operator approach to the orbifold compactification of the bosonic string. Of particular importance to operator formalism is the con formal structure and the operator product expansion. These are introduced and discussed in detail. The Frenkel-Kac-Segal mechanism is then examined and is shown to be a consequence of the duality of dimension one operators of an analytic bosonic string compactified on a certain torus. Possible generalizations to higher dimension operators are discussed, this includes the cross-bracket algebra which plays a central role in the vertex operator representation of Griess's algebra, and hence the Fischer-Griess Monster Group. The mechanism of compactification is then extended to orbifolds. The exposition includes a detailed account of the twisted sectors, especially of the zero-modes and the twisted operator cocycles. The conformal structure, vertex operators and correlation functions for twisted strings are then introduced. This leads to a discussion of the vertex operators which represent the emission of untwisted states. It is shown how these operators generate Kac-Moody algebras in the twisted sectors. The vertex operators which insert twisted states are then constructed, and their role as intertwining operators is explained. Of particular importance in this discussion is the role of the operator cocycles, which are seen to be crucial for the correct working of the twisted string emission vertices. The previously established formalism is then applied in detail to the reflection twist. This includes an explicit representation of the twisted operator cocycles by elements of an appropriate Clifford algebra and the elucidation of the operator algebra of the twisted emission vertices, for the ground and first excited states in the twisted sector. This motivates the 'enhancement mechanism', a generalization of the Frenkel-Kac-Segal mechanism, involving twisted string emission vertices, in dimensions 8, 16 and 24. associated with rank 8 Lie algebras, rank 16 Lie algebras and the cross-bracket algebra for the Leech lattice, respectively. Some of the relevant characters of the 'enhanced" modules are determined, and the connection of the cross-bracket algebra to the phenomenon of 'Monstrous Moonshine' and the Monster Group is explained. Algebra enhancement is then discussed from the greatly simplified shifted picture and extensions to higher order twists are considered. Finally, a comparison of this work with other recent research is given. In particular, the connection with the path integral formalism and the extension to general asymmetric orbifolds is discussed. The possibility of reformulating the moonshine module in a 'covaxiant' twenty-six dimensional setting is also considered.
|
17 |
A large-D Weyl invariant string model in Anti-de Sitter spaceDavies, Ian James January 2002 (has links)
In this thesis we present a novel scheme for calculating the bosonic string partition function on certain curved backgrounds related to Anti-de Sitter [AdS] space. We take the concept of a large expansion from nonlinear sigma models in particle physics and apply it to the bosonic string theory sigma model, where the analogous large dimensionless parameter is the dimension of the target space, D. We then perform a perturbative expansion in negative powers of D, rather than in positive powers of α/ι(^2)(the conventional expansion parameter).As a specific example of a curved geometry of interest, we focus on an example of the metric proposed by Polyakov [1] to describe the dynamics of the Wilson loop of pure SU(N) Yang-Mills theory, namely AdS space. Using heat kernel methods, we find that within the large-D scheme one can obtain different conditions for Weyl invariance than those found in [2]. This is because our scheme is valid for backgrounds where a is no longer small. In particular, we find that it is possible to have a dilaton that depends on the holographic coordinate only, provided one allows mixing of the ghost and matter sectors of the worldsheet theory. This field preserves Poincare invariance in the gauge theory, unlike the conventional dilaton. We also compute a simple string amplitude by constructing certain vertex operators for a scalar field in AdS, and discuss the consequences for the string spectrum.
|
18 |
Aspects of string compactifications in orbifolds with Wilson linesVanegas, Nelson January 1998 (has links)
No description available.
|
19 |
String scattering amplitudesSandoval, Leonidas January 1995 (has links)
No description available.
|
20 |
Symmetry in classical and quantum field theory : an application of the theory of jetsMcCloud, Paul James January 1995 (has links)
No description available.
|
Page generated in 0.0859 seconds