Spelling suggestions: "subject:"strong additive""
1 |
Exhaustivity, continuity, and strong additivity in topological Riesz spaces.Muller, Kimberly O. 05 1900 (has links)
In this paper, exhaustivity, continuity, and strong additivity are studied in the setting of topological Riesz spaces. Of particular interest is the link between strong additivity and exhaustive elements of Dedekind s-complete Banach lattices. There is a strong connection between the Diestel-Faires Theorem and the Meyer-Nieberg Lemma in this setting. Also, embedding properties of Banach lattices are linked to the notion of strong additivity. The Meyer-Nieberg Lemma is extended to the setting of topological Riesz spaces and uniform absolute continuity and uniformly exhaustive elements are studied in this setting. Counterexamples are provided to show that the Vitali-Hahn-Saks Theorem and the Brooks-Jewett Theorem cannot be extended to submeasures or to the setting of Banach lattices.
|
Page generated in 0.0665 seconds