• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Continuous primitives with infinite derivatives

Manolis, David January 2023 (has links)
In calculus the concept of an infinite derivative – i.e. DF(x) = ±∞ – is seldom studied due to a plethora of complications that arise from this definition. For instance, in this extended sense, algebraic expressions involving derivatives are generally undefined; and two continuous functions possessing identical derivatives at every point of an interval generally differ by a non-constant function. These problems are fundamentally irremediable insofar as calculus is concerned and must therefore be addressed in a more general setting. This is quite difficult since the literature on infinite derivatives is rather sparse and seldom accessible to non-specialists. Therefore we supply a self-contained thesis on continuous functions with infinite derivatives aimed at graduate students with a background in real analysis and measure theory.  Predominately we study continuous primitives which satisfy the Luzin condition (N) by establishing a deep connection with the strong Luzin condition – a weak form of absolute continuity which has its origins in the Henstock–Kurzweil theory of integration. The main result states that a function satisfies the strong Luzin condition if and only if it can be expressed as a sum of two such primitives. Furthermore, we establish some pathological properties of continuous primitives which fail to satisfy the Luzin condition (N).

Page generated in 0.1215 seconds