• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure Determination and Prediction of Zeolites : A Combined Study by Electron Diffraction, Powder X-Ray Diffraction and Database Mining

Guo, Peng January 2016 (has links)
Zeolites are crystalline microporous aluminosilicates with well-defined cavities or channels of molecular dimensions. They are widely used for applications such as gas adsorption, gas storage, ion exchange and catalysis. The size of the pore opening allows zeolites to be categorized into small, medium, large and extra-large pore zeolites. A typical zeolite is the small pore silicoaluminophosphate SAPO-34, which is an important catalyst in the MTO (methanol-to-olefin) process. The properties of zeolite catalysts are determined mainly by their structures, and it is therefore important to know the structures of these materials in order to understand their properties and explore new applications. Single crystal X-ray diffraction has been the main technique used to determine the structures of unknown crystalline materials such as zeolites. This technique, however, can be used only if crystals larger than several micrometres are available. Powder X-ray diffraction (PXRD) is an alternative technique to determine the structures if only small crystals are available. However, peak overlap, poor crystallinity and the presence of impurities hinder the solution of structures from PXRD data. Electron crystallography can overcome these problems. We have developed a new method, which we have called “rotation electron diffraction” (RED), for the automated collection and processing of three-dimensional electron diffraction data. This thesis describes how the RED method has been applied to determine the structures of several zeolites and zeolite-related materials. These include two interlayer expanded silicates (COE-3 and COE-4), a new layered zeolitic fluoroaluminophosphate (EMM-9), a new borosilicate (EMM-26), and an aluminosilicate (ZSM-25). We have developed a new approach based on strong reflections, and used it to determine the structure of ZSM-25, and to predict the structures of a series of complex zeolites in the RHO family. We propose a new structural principle that describes a series of structurally related zeolites known as “embedded isoreticular zeolite structures”, which have expanding unit cells. The thesis also summarizes several common structural features of zeolites in the Database of Zeolite Structures. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript.</p>

Page generated in 0.1178 seconds