• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

First-Principles Study of the Site Occupancy and Magnetic Properties of Zinc-Tin-Substituted Strontium Hexaferrite

Guldal, Serkan 06 August 2011 (has links)
I performed first principles studies of the site occupancy and magnetic properties of zinc-tin-substituted strontium hexaferrite by using density functional theory. In this study, I determined the site preference of zinc and tin atoms when they are restricted to occupy the same sublattice in strontium-hexaferrite. I found that Zn and Sn atoms prefer to replace Fe ions at 2a sublattice under this restriction and caused the saturation magnetization to decrease.
2

First Principles Investigation Of Substituted Strontium Hexaferrite

Dixit, Vivek 11 December 2015 (has links)
This dissertation investigates how the magnetic properties of strontium hexaferrite change upon the substitution of foreign atoms at the Fe sites. Strontium hexaferrite, SrFe12O19 is a commonly used hard magnetic material and is produced in large quantities (around 500,000 tons per year). For different applications of strontium hexaferrite, its magnetic properties can be tuned by a proper substitution of the foreign atoms. Experimental screening for a proper substitution is a cost-intensive and time-consuming process, whereas computationally it can be done more efficiently. We used the ‘density functional theory’ a first principles based method to study substituted strontium hexaferrite. The site occupancies of the substituted atoms were estimated by calculating the substitution energies of different configurations. The formation probabilities of configurations were used to calculate the magnetic properties of substituted strontium hexaferrite. In the first study, Al-substituted strontium hexaferrite, SrFe12-xAl x O19, with x = 0.5 and x = 1.0 were investigated. It was found that at the annealing temperature the nonmagnetic Al+3 ions preferentially replace Fe+3 ions from the 12k and 2a sites. We found that the magnetization decreases and the magnetic anisotropy field increases as the fraction, x of the Al atoms increases. In the second study, SrFe12-x Gax O19 and SrFe12-x Inx O19 with x = 0.5 and x = 1.0 were investigated. In the case of SrFe12-x Gax O19, the sites where Ga+3 ions prefer to enter are: 12k, 2a, and 4f1. For SrFe12-x Inx O19, In+3 ions most likely to occupy the 12k, 4f1, and 4f2 sites. In both cases the magnetization was found to decrease slightly as the fraction of substituted atom increases. The magnetic anisotropy field increased for SrFe12-x Gax O19, and decreased for SrFe12-x Inx O19 as the concentration of substituted atoms increased. In the third study, 23 elements (M) were screened for their possible substitution in strontium hexaferrite, SrFe12-x Mx O19 with x = 0.5. In each case the site preference of the substituted atom and the magnetic properties were calculated. We found that Bi, Ge, Sb, Sn, and Sc can effectively increase the magnetization, and Cr, P, Co, Al, Ga, and Ti can increase the anisotropy field when substituted into strontium hexaferrite.
3

A Study of Microfluidic Reconfiguration Mechanisms Enabled by Functionalized Dispersions of Colloidal Material for Radio Frequency Applications

Goldberger, Sean A. 2009 May 1900 (has links)
Communication and reconnaissance systems are requiring increasing flexibility concerning functionality and efficiency for multiband and broadband frequency applications. Circuit-based reconfiguration mechanisms continue to promote radio frequency (RF) application flexibility; however, increasing limitations have resulted in hindering performance. Therefore, the implementation of a "wireless" reconfiguration mechanism provides the required agility and amicability for microwave circuits and antennas without local overhead. The wireless reconfiguration mechanism in this thesis integrates dynamic, fluidic-based material systems to achieve electromagnetic agility and reduce the need for "wired" reconfiguration technologies. The dynamic material system component has become known as electromagnetically functionalized colloidal dispersions (EFCDs). In a microfluidic reconfiguration system, they provide electromagnetic agility by altering the colloidal volume fraction of EFCDs - their name highlights the special considerations we give to material systems in applied electromagnetics towards lowering loss and reducing system complexity. Utilizing EFCDs at the RF device-level produced the first circuit-type integration of this reconfiguration system; this is identified as the coaxial stub microfluidic impedance transformer (COSMIX). The COSMIX is a small hollowed segment of transmission line with results showing a full reactive loop (capacitive to inductive tuning) around the Smith chart over a 1.2 GHz bandwidth. A second microfluidic application demonstrates a novel antenna reconfiguration mechanism for a 3 GHz microstrip patch antenna. Results showed a 300 MHz downward frequency shift by dielectric colloidal dispersions. Magnetic material produced a 40 MHz frequency shift. The final application demonstrates the dynamically altering microfluidic system for a 3 GHz 1x2 array of linearly polarized microstrip patch antennas. The parallel microfluidic capillaries were imbedded in polydimethylsiloxane (PDMS). Both E- and H-plane designs showed a 250 MHz frequency shift by dielectric colloidal dispersions. Results showed a strong correlation between decreasing electrical length of the elements and an increase of the volume fraction, causing frequency to decrease and mutual coupling to increase. Measured, modeled, and analytical results for impedance, voltage standing wave ratio (VSWR), and radiation behavior (where applicable) are provided.
4

A Study of Microfluidic Reconfiguration Mechanisms Enabled by Functionalized Dispersions of Colloidal Material for Radio Frequency Applications

Goldberger, Sean A. 2009 May 1900 (has links)
Communication and reconnaissance systems are requiring increasing flexibility concerning functionality and efficiency for multiband and broadband frequency applications. Circuit-based reconfiguration mechanisms continue to promote radio frequency (RF) application flexibility; however, increasing limitations have resulted in hindering performance. Therefore, the implementation of a "wireless" reconfiguration mechanism provides the required agility and amicability for microwave circuits and antennas without local overhead. The wireless reconfiguration mechanism in this thesis integrates dynamic, fluidic-based material systems to achieve electromagnetic agility and reduce the need for "wired" reconfiguration technologies. The dynamic material system component has become known as electromagnetically functionalized colloidal dispersions (EFCDs). In a microfluidic reconfiguration system, they provide electromagnetic agility by altering the colloidal volume fraction of EFCDs - their name highlights the special considerations we give to material systems in applied electromagnetics towards lowering loss and reducing system complexity. Utilizing EFCDs at the RF device-level produced the first circuit-type integration of this reconfiguration system; this is identified as the coaxial stub microfluidic impedance transformer (COSMIX). The COSMIX is a small hollowed segment of transmission line with results showing a full reactive loop (capacitive to inductive tuning) around the Smith chart over a 1.2 GHz bandwidth. A second microfluidic application demonstrates a novel antenna reconfiguration mechanism for a 3 GHz microstrip patch antenna. Results showed a 300 MHz downward frequency shift by dielectric colloidal dispersions. Magnetic material produced a 40 MHz frequency shift. The final application demonstrates the dynamically altering microfluidic system for a 3 GHz 1x2 array of linearly polarized microstrip patch antennas. The parallel microfluidic capillaries were imbedded in polydimethylsiloxane (PDMS). Both E- and H-plane designs showed a 250 MHz frequency shift by dielectric colloidal dispersions. Results showed a strong correlation between decreasing electrical length of the elements and an increase of the volume fraction, causing frequency to decrease and mutual coupling to increase. Measured, modeled, and analytical results for impedance, voltage standing wave ratio (VSWR), and radiation behavior (where applicable) are provided.

Page generated in 0.0916 seconds