• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The dynamic and static plastic collapse of structural members incorporating axial stiffening

Birch, R. S. January 1987 (has links)
No description available.
2

Multiphase Fluid-Material Interaction: Efficient Solution Algorithms and Shock-Dominated Applications

Ma, Wentao 05 September 2023 (has links)
This dissertation focuses on the development and application of numerical algorithms for solving compressible multiphase fluid-material interaction problems. The first part of this dissertation is motivated by the extraordinary shock-resisting ability of elastomer coating materials (e.g., polyurea) under explosive loading conditions. Their performance, however, highly depends on their dynamic interaction with the substrate (e.g., metal) and ambient fluid (e.g., air or liquid); and the detailed interaction process is still unclear. Therefore, to certify the application of these materials, a fluid-structure coupled computational framework is needed. The first part of this dissertation developes such a framework. In particualr, the hyper-viscoelastic constitutive relation of polyurea is incorporated into a high-fidelity computational framework which couples a finite volume compressible multiphase fluid dynamics solver and a nonlinear finite element structural dynamics solver. Within this framework, the fluid-structure and liquid-gas interfaces are tracked using embedded boundary and level set methods. Then, the developed computational framework is applied to study the behavior a bilayer coating–substrate (i.e., polyurea-aluminum) system under various loading conditions. The observed two-way coupling between the structure and the bubble generated in a near-field underwater explosion motivates the next part of this dissertation. The second part of this dissertation investigates the yielding and collapse of an underwater thin-walled aluminum cylinder in near-field explosions. As the explosion intensity varies by two orders of magnitude, three different modes of collapse are discovered, including one that appears counterintuitive (i.e., one lobe extending towards the explosive charge), yet has been observed in previous laboratory experiments. Because of the transition of modes, the time it takes for the structure to reach self-contact does not decrease monotonically as the explosion intensity increases. Detailed analysis of the bubble-structure interaction suggests that, in addition to the incident shock wave, the second pressure pulse resulting from the contraction of the explosion bubble also has a significant effect on the structure's collapse. The phase difference between the structural vibration and the bubble's expansion and contraction strongly influences the structure's mode of collapse. The third part focuses on the development of efficient solution algorithms for compressible multi-material flow simulations. In these simulations, an unresolved challenge is the computation of advective fluxes across material interfaces that separate drastically different thermodynamic states and relations. A popular class of methods in this regard is to locally construct bimaterial Riemann problems, and to apply their exact solutions in flux computation, such as the one used in the preceding parts of the dissertation. For general equations of state, however, finding the exact solution of a Riemann problem is expensive as it requires nested loops. Multiplied by the large number of Riemann problems constructed during a simulation, the computational cost often becomes prohibitive. This dissertation accelerates the solution of bimaterial Riemann problems without introducing approximations or offline precomputation tasks. The basic idea is to exploit some special properties of the Riemann problem equations, and to recycle previous solutions as much as possible. Following this idea, four acceleration methods are developed. The performance of these acceleration methods is assessed using four example problems that exhibit strong shock waves, large interface deformation, contact of multiple (>2) interfaces, and interaction between gases and condensed matters. For all the problems, the solution of bimaterial Riemann problems is accelerated by 37 to 87 times. As a result, the total cost of advective flux computation, which includes the exact Riemann problem solution at material interfaces and the numerical flux calculation over the entire computational domain, is accelerated by 18 to 81 times. / Doctor of Philosophy / This dissertation focuses on the development and application of numerical methods for solving multiphase fluid-material interaction problems. The first part of this dissertation is motivated by the extraordinary shock-resisting ability of elastomer coating materials (e.g., polyurea) under explosive loading conditions. Their performance, however, highly depends on their dynamic interaction with the underlying structure and the ambient water or air; and the detailed interaction process is still unclear. Therefore, the first part of this dissertation developes a fluid-structure coupled computational framework to certify the application of these materials. In particular, the special material property of the coating material is incorparated into a state-of-the-art fluid-structure coupled computational framework that is able to model large deformation under extreme physical conditions. Then, the developed computational framework is applied to study how a thin-walled aluminum cylinder with polyurea coating responds to various loading conditions. The observed two-way coupling between the structure and the bubble generated in a near-field underwater explosion motivates the next part of this dissertation. The second part of this dissertation investigates the failure (i.e., yielding and collapse) of an underwater thin-walled aluminum cylinder in near-field explosions. As the explosion intensity varies by two orders of magnitude, three different modes of collapse are discovered, including one that appears counterintuitive (i.e., one lobe extending towards the explosive charge), yet has been observed in previous laboratory experiments. Via a detailed analysis of the interaction between the explosion gas bubble, the aluminum cylinder, and the ambient liquid water, this dissertation elucidated the role of bubble dynamics in the structure's different failure behaviors and revealed the transition mechanism between these behaviors. The third part of this dissertation presents efficient solution algorithms for the simulations of compressible multi-material flows. Many problems involving bubbles, droplets, phase transitions, and chemical reactions fall into this category. In these problems, discontinuities in fluid state variables (e.g., density) and material properties arise across the material interfaces, challenging numerical schemes' accuracy and robustness. In this regard, a promising class of methods that emerges in the recent decade is to resolve the exact wave structure at material interfaces, such as the one used in the preceding parts of the dissertation. However, the computational cost of these methods is prohibitive due to the nested loops invoked at every mesh edge along the material interface. To address this issue, the dissertation develops four efficient solution methods, following the idea of exploiting special properties of governing equations and recycling previous solutions. Then, the acceleration effect of these methods is assessed using various challenging multi-material flow problems. In different test cases, significant reduction in computational cost (acceleration of 18 to 81 times) is achieved, without sacrificing solver robustness and solution accuracy.
3

Colapso de edifício por ruptura das estacas: estudo das causas e da recuperação / Building collapse for piles rupture: study of the causes and recovery

Souza, Eduardo Gimenez de 11 April 2003 (has links)
A maior parte dos acidentes em edifícios, causados por falhas de projeto ou de execução, ocorre na fase de construção. Além de causar prejuízos financeiros, eles colocam em risco a vida dos trabalhadores da obra. Porém, mais graves são os acidentes verificados após o término da construção. Além dos prejuízos serem muito maiores, eles podem envolver pessoas de todos os tipos, crianças, mulheres e idosos. São muitos os casos em que o colapso global do edifício decorre de problemas na fundação. Esse é o caso do edifício considerado neste trabalho, localizado no litoral norte do Estado de São Paulo. Trata-se de um edifício para veraneio, em alvenaria estrutural, com garagem no térreo e quatro andares de apartamentos, apoiado em estacas pré-moldadas, cravadas em solo instável. Pouco tempo após a conclusão e parcialmente ocupado, apresentou recalques e patologias significativas que exigiram providências, reforço de pilares de alvenaria inclusive. Antes que fossem detectadas as causas dos recalques, durante uma madrugada, o edifício desabou: em um lado do edifício, o primeiro pavimento encostou-se ao chão. Felizmente, era um dia-de-semana, fora da alta temporada, e não havia pessoas no seu interior. Também o vigia estava fora do edifício e nada sofreu, além de um grande susto. Os objetivos deste trabalho são descrever o problema ocorrido com esse edifício e analisar as causas e as providências possíveis para sua recuperação, já que os andares superiores praticamente nada sofreram. Serão apresentados os resultados de uma investigação no local e de uma análise para determinação dos esforços e das causas da ruptura das estacas, que provocaram o colapso do edifício. Ficou evidente que o aterro localizado sobre o pavimento térreo e o sistema de fundação do edifício não estavam adequados para o tipo de solo do terreno. Tais fatores tiveram papel fundamental para a ruptura do sistema. A importância de se conhecer minuciosamente essas causas transcende a presente obra, pois pelo mesmo motivo, outras construções podem apresentar danos semelhantes. / Most of the buildings accidents, caused by project flaws or of execution, it happens in the construction phase. Besides causing financial damages, they put in risk the workers life. However, more serious accidents are verified after the end of the construction. Besides the damages are larger, they can involve all types of people, children, women and senior. In many cases the global building collapse elapses of foundation problems. That is the case of the building considered in this work, located in the north coast of São Paulo State. Treated of a building for summer vacation, in structural masonry, with garage in the earthy pavement and four floors of apartments, leaning in premolded piles, nailed in unstable soil. After the conclusion and partially in use, it presented repress and significant pathologies that demanded providences, column masonry reinforcement besides. Before detected the repress causes, during one dawn, the building tumbled: on a side of the building, the first pavement was leaned to the ground. Happily, it was a weekday, out of the high season, and there were not people inside. Also the watchmen was out of the building and nothing suffered, besides a great fright. The objectives of this healthy work are to describe the problem happened with that building, to analyze the causes and the possible providences for it recovery, since the superior walks practically nothing suffered. The results of a local investigation, an analysis for determination the efforts and the causes of the piles rupture will be presented, that provoked the building collapse. It was evident that the located embankment on the earthy pavement and the building foundation system, they were not adapted for the soil type of the land. Such factors had fundamental paper for the system rupture. The importance of knowing those causes thoroughly, transcends to present work, because for the same reason other constructions can present similar damages.
4

Colapso de edifício por ruptura das estacas: estudo das causas e da recuperação / Building collapse for piles rupture: study of the causes and recovery

Eduardo Gimenez de Souza 11 April 2003 (has links)
A maior parte dos acidentes em edifícios, causados por falhas de projeto ou de execução, ocorre na fase de construção. Além de causar prejuízos financeiros, eles colocam em risco a vida dos trabalhadores da obra. Porém, mais graves são os acidentes verificados após o término da construção. Além dos prejuízos serem muito maiores, eles podem envolver pessoas de todos os tipos, crianças, mulheres e idosos. São muitos os casos em que o colapso global do edifício decorre de problemas na fundação. Esse é o caso do edifício considerado neste trabalho, localizado no litoral norte do Estado de São Paulo. Trata-se de um edifício para veraneio, em alvenaria estrutural, com garagem no térreo e quatro andares de apartamentos, apoiado em estacas pré-moldadas, cravadas em solo instável. Pouco tempo após a conclusão e parcialmente ocupado, apresentou recalques e patologias significativas que exigiram providências, reforço de pilares de alvenaria inclusive. Antes que fossem detectadas as causas dos recalques, durante uma madrugada, o edifício desabou: em um lado do edifício, o primeiro pavimento encostou-se ao chão. Felizmente, era um dia-de-semana, fora da alta temporada, e não havia pessoas no seu interior. Também o vigia estava fora do edifício e nada sofreu, além de um grande susto. Os objetivos deste trabalho são descrever o problema ocorrido com esse edifício e analisar as causas e as providências possíveis para sua recuperação, já que os andares superiores praticamente nada sofreram. Serão apresentados os resultados de uma investigação no local e de uma análise para determinação dos esforços e das causas da ruptura das estacas, que provocaram o colapso do edifício. Ficou evidente que o aterro localizado sobre o pavimento térreo e o sistema de fundação do edifício não estavam adequados para o tipo de solo do terreno. Tais fatores tiveram papel fundamental para a ruptura do sistema. A importância de se conhecer minuciosamente essas causas transcende a presente obra, pois pelo mesmo motivo, outras construções podem apresentar danos semelhantes. / Most of the buildings accidents, caused by project flaws or of execution, it happens in the construction phase. Besides causing financial damages, they put in risk the workers life. However, more serious accidents are verified after the end of the construction. Besides the damages are larger, they can involve all types of people, children, women and senior. In many cases the global building collapse elapses of foundation problems. That is the case of the building considered in this work, located in the north coast of São Paulo State. Treated of a building for summer vacation, in structural masonry, with garage in the earthy pavement and four floors of apartments, leaning in premolded piles, nailed in unstable soil. After the conclusion and partially in use, it presented repress and significant pathologies that demanded providences, column masonry reinforcement besides. Before detected the repress causes, during one dawn, the building tumbled: on a side of the building, the first pavement was leaned to the ground. Happily, it was a weekday, out of the high season, and there were not people inside. Also the watchmen was out of the building and nothing suffered, besides a great fright. The objectives of this healthy work are to describe the problem happened with that building, to analyze the causes and the possible providences for it recovery, since the superior walks practically nothing suffered. The results of a local investigation, an analysis for determination the efforts and the causes of the piles rupture will be presented, that provoked the building collapse. It was evident that the located embankment on the earthy pavement and the building foundation system, they were not adapted for the soil type of the land. Such factors had fundamental paper for the system rupture. The importance of knowing those causes thoroughly, transcends to present work, because for the same reason other constructions can present similar damages.
5

Failure Analysis of the World Trade Center 5 Building

LaMalva, Kevin Joseph 29 April 2007 (has links)
This project involves a failure analysis of the internal structural collapse that occurred in World Trade Center 5 (WTC 5) due to fire exposure alone on September 11, 2001. It is hypothesized that the steel column-tree assembly failed during the heating phase of the fire. The results of this research have serious and far-reaching implications, for this method of construction is utilized in approximately 20,000 existing buildings and continues to be very popular. Catastrophic failure during the heating phase of a fire would endanger the lives of firefighters and building occupants undergoing extended egress times (e.g., high-rise buildings), or relying upon defend-in-place strategies (e.g., hospitals). Computer software was used to reconstruct the fire event and predict the structural performance of the assembly when exposed to the fire. Results from a finite element, thermal-stress model confirms this hypothesis, for it is concluded that the catastrophic, progressive structural collapse occurred approximately 2 hours into the fire exposure.

Page generated in 0.0626 seconds