• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integrated Structural Health Management Of Complex Carbon Fiber Reinforced Composite Structures

January 2012 (has links)
abstract: Structural health management (SHM) is emerging as a vital methodology to help engineers improve the safety and maintainability of critical structures. SHM systems are designed to reliably monitor and test the health and performance of structures in aerospace, civil, and mechanical engineering applications. SHM combines multidisciplinary technologies including sensing, signal processing, pattern recognition, data mining, high fidelity probabilistic progressive damage models, physics based damage models, and regression analysis. Due to the wide application of carbon fiber reinforced composites and their multiscale failure mechanisms, it is necessary to emphasize the research of SHM on composite structures. This research develops a comprehensive framework for the damage detection, localization, quantification, and prediction of the remaining useful life of complex composite structures. To interrogate a composite structure, guided wave propagation is applied to thin structures such as beams and plates. Piezoelectric transducers are selected because of their versatility, which allows them to be used as sensors and actuators. Feature extraction from guided wave signals is critical to demonstrate the presence of damage and estimate the damage locations. Advanced signal processing techniques are employed to extract robust features and information. To provide a better estimate of the damage for accurate life estimation, probabilistic regression analysis is used to obtain a prediction model for the prognosis of complex structures subject to fatigue loading. Special efforts have been applied to the extension of SHM techniques on aerospace and spacecraft structures, such as UAV composite wings and deployable composite boom structures. Necessary modifications of the developed SHM techniques were conducted to meet the unique requirements of the aerospace structures. The developed SHM algorithms are able to accurately detect and quantify impact damages as well as matrix cracking introduced. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2012
2

Sensing and Knowledge Mining for Structural Health Management

January 2011 (has links)
abstract: Current economic conditions necessitate the extension of service lives for a variety of aerospace systems. As a result, there is an increased need for structural health management (SHM) systems to increase safety, extend life, reduce maintenance costs, and minimize downtime, lowering life cycle costs for these aging systems. The implementation of such a system requires a collaborative research effort in a variety of areas such as novel sensing techniques, robust algorithms for damage interrogation, high fidelity probabilistic progressive damage models, and hybrid residual life estimation models. This dissertation focuses on the sensing and damage estimation aspects of this multidisciplinary topic for application in metallic and composite material systems. The primary means of interrogating a structure in this work is through the use of Lamb wave propagation which works well for the thin structures used in aerospace applications. Piezoelectric transducers (PZTs) were selected for this application since they can be used as both sensors and actuators of guided waves. Placement of these transducers is an important issue in wave based approaches as Lamb waves are sensitive to changes in material properties, geometry, and boundary conditions which may obscure the presence of damage if they are not taken into account during sensor placement. The placement scheme proposed in this dissertation arranges piezoelectric transducers in a pitch-catch mode so the entire structure can be covered using a minimum number of sensors. The stress distribution of the structure is also considered so PZTs are placed in regions where they do not fail before the host structure. In order to process the data from these transducers, advanced signal processing techniques are employed to detect the presence of damage in complex structures. To provide a better estimate of the damage for accurate life estimation, machine learning techniques are used to classify the type of damage in the structure. A data structure analysis approach is used to reduce the amount of data collected and increase computational efficiency. In the case of low velocity impact damage, fiber Bragg grating (FBG) sensors were used with a nonlinear regression tool to reconstruct the loading at the impact site. / Dissertation/Thesis / Ph.D. Aerospace Engineering 2011
3

A machine learning analysis of photographs of the Öresund bridge

de Redelijkheid, Martijn, Kokoneshi, Kristian January 2020 (has links)
This study presents an exploration of several machine learning and image processing theories, as well as a literature review of several previous works on concrete crack detection systems. Through the literature review a system is selected and implemented with the Öresund bridge photograph collection. The selected system is a Convolutional Neural Network (CNN) using cropped (256x256x) images for input. The CNN has a total of 13 layers that were implemented as described in the paper. All parts of the implementation such as cropping, code, and testing are described in detail. This study found a final accuracy rate of 77% for the trained net. This is combined with a sliding window technique for handling larger images. An exploration of reasons for this accuracy rate is done at the end of the paper.

Page generated in 0.1217 seconds