• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rastreamento de objetos baseado em reconhecimento estrutural de padrões / Object tracking based on structural pattern recognition

Graciano, Ana Beatriz Vicentim 23 March 2007 (has links)
Diversos problemas práticos envolvendo sistemas de visão computacional, tais como vigilância automatizada, pesquisas de conteúdo específico em bancos de dados multimídias ou edição de vídeo, requerem a localização e o reconhecimento de objetos dentro de seqüências de imagens ou vídeos digitais. Mais formalmente, denomina-se rastreamento o processo de determinação da posição de certo(s) objeto(s) ao longo do tempo numa seqüência de imagens. Já a tarefa de reconhecimento caracteriza-se pela classificação desses objetos de acordo com algum rótulo pré-estabelecido ou apoiada em conhecimento prévio tipicamente introduzido através de um modelo dos objetos de interesse. No entanto, rastrear e classificar objetos em vídeo digital são tarefas desafiadoras, tanto pelas dificuldades inerentes a esse tipo de elemento pictórico, quanto pelo variável grau de complexidade que os quadros sob análise podem apresentar. Este documento apresenta uma metodologia baseada em modelo para rastrear e reconhecer objetos em vídeo digital através de uma representação por grafos relacionais com atributos (ARGs). Tais estruturas surgiram dentro do paradigma de reconhecimento estrutural de padrões e têm se mostrado bastante flexíveis e poderosas para modelar problemas diversos, pois podem transmitir dados quantitativos, relacionais, estruturais e simbólicos. Como modelo e entrada são descritos através desses grafos, a questão de reconhecimento é interpretada como um problema de casamento inexato entre grafos, que consiste em mapear os vértices do ARG de entrada nos vértices do ARG modelo. Em seguida, é realizado o rastreamento dos objetos de acordo com uma transformação afim derivada de parâmetros obtidos da etapa de reconhecimento. Para validar a metodologia proposta, resultados sobre seqüências de imagens digitais, sintéticas e reais, são apresentados e discutidos. / Several practical problems involving computer vision systems, such as automated surveillance, content-based queries in multimedia databases or video editing require the location and recognition of objects within image sequences or digital video. More formally, the process of determining the position of certain objects in an image sequence throughout time is called tracking, whereas the recognition task is characterized by the classification of such objects according to pre-defined labels or a priori knowledge, typically introduced by means of a model of the target objects. However, tracking and recognition of objects in digital video are not simple tasks, either because of the inherent difficulties of such a pictorial element, or due to the variable level of complexity that the frames under consideration might present. This document presents a model-based methodology for tracking and recognizing objects represented by attributed relational graphs (ARGs) in digital video. These structures have arisen from the paradigm of structural pattern recognition and have proven to be very flexible and powerful for modeling various problems, as they can hold many sorts of data (e.g: quantitative, relational, structural and symbolic). Since both model and input data are described through these graphs, the recognition matter may be interpreted as an inexact graph matching problem, which consists in finding a correspondence between the set of vertices of the input ARG and that of the model ARG. In the next step, object tracking is performed according to an affine transform derived from parameters extracted from the recognition phase. To validate the proposed methodology, results obtained from real and synthetic digital image sequences are presented and discussed.
2

Rastreamento de objetos baseado em reconhecimento estrutural de padrões / Object tracking based on structural pattern recognition

Ana Beatriz Vicentim Graciano 23 March 2007 (has links)
Diversos problemas práticos envolvendo sistemas de visão computacional, tais como vigilância automatizada, pesquisas de conteúdo específico em bancos de dados multimídias ou edição de vídeo, requerem a localização e o reconhecimento de objetos dentro de seqüências de imagens ou vídeos digitais. Mais formalmente, denomina-se rastreamento o processo de determinação da posição de certo(s) objeto(s) ao longo do tempo numa seqüência de imagens. Já a tarefa de reconhecimento caracteriza-se pela classificação desses objetos de acordo com algum rótulo pré-estabelecido ou apoiada em conhecimento prévio tipicamente introduzido através de um modelo dos objetos de interesse. No entanto, rastrear e classificar objetos em vídeo digital são tarefas desafiadoras, tanto pelas dificuldades inerentes a esse tipo de elemento pictórico, quanto pelo variável grau de complexidade que os quadros sob análise podem apresentar. Este documento apresenta uma metodologia baseada em modelo para rastrear e reconhecer objetos em vídeo digital através de uma representação por grafos relacionais com atributos (ARGs). Tais estruturas surgiram dentro do paradigma de reconhecimento estrutural de padrões e têm se mostrado bastante flexíveis e poderosas para modelar problemas diversos, pois podem transmitir dados quantitativos, relacionais, estruturais e simbólicos. Como modelo e entrada são descritos através desses grafos, a questão de reconhecimento é interpretada como um problema de casamento inexato entre grafos, que consiste em mapear os vértices do ARG de entrada nos vértices do ARG modelo. Em seguida, é realizado o rastreamento dos objetos de acordo com uma transformação afim derivada de parâmetros obtidos da etapa de reconhecimento. Para validar a metodologia proposta, resultados sobre seqüências de imagens digitais, sintéticas e reais, são apresentados e discutidos. / Several practical problems involving computer vision systems, such as automated surveillance, content-based queries in multimedia databases or video editing require the location and recognition of objects within image sequences or digital video. More formally, the process of determining the position of certain objects in an image sequence throughout time is called tracking, whereas the recognition task is characterized by the classification of such objects according to pre-defined labels or a priori knowledge, typically introduced by means of a model of the target objects. However, tracking and recognition of objects in digital video are not simple tasks, either because of the inherent difficulties of such a pictorial element, or due to the variable level of complexity that the frames under consideration might present. This document presents a model-based methodology for tracking and recognizing objects represented by attributed relational graphs (ARGs) in digital video. These structures have arisen from the paradigm of structural pattern recognition and have proven to be very flexible and powerful for modeling various problems, as they can hold many sorts of data (e.g: quantitative, relational, structural and symbolic). Since both model and input data are described through these graphs, the recognition matter may be interpreted as an inexact graph matching problem, which consists in finding a correspondence between the set of vertices of the input ARG and that of the model ARG. In the next step, object tracking is performed according to an affine transform derived from parameters extracted from the recognition phase. To validate the proposed methodology, results obtained from real and synthetic digital image sequences are presented and discussed.

Page generated in 0.1177 seconds