1 |
Rotordynamic performance of a rotor supported on bump-type foil bearings: experiments and predictionsRubio Tabares, Dario 16 August 2006 (has links)
Gas foil bearings (GFB) appear to satisfy most requirements for oil-free
turbomachinery, i.e. relatively simple in construction, ensuring low drag friction and
reliable high speed operation. However, GFBs have a limited load capacity and minimal
amounts of damping. A test rig for the rotordynamic evaluation of gas foil bearings was
constructed. A DC router motor, 25 krpm max speed, drives a 1.02 kg hollow rotor
supported on two bump-type foil gas bearings (L = D = 38.10 mm). Measurements of
the test rotor dynamic response were conducted for increasing mass imbalance
conditions. Typical waterfalls of rotor coast down response from 25 krpm to rest
evidence the onset and disappearance of severe subsynchronous motions with whirl
frequencies at ~ 50% of rotor speed, roughly coinciding with the (rigid mode) natural
frequencies of the rotor-bearing system. The amplitudes of motion, synchronous and
subsynchronous, increase (non) linearly with respect to the imbalance displacements.
The rotor motions are rather large; yet, the foil bearings, by virtue of their inherent
flexibility, prevented the catastrophic failure of the test rotor. Tests at the top shaft speed,
25 krpm, did not excite subsynchronous motions. In the experiments, the
subsynchronous motion speed range is well confined to shaft speeds ranging from 22
krpm to 12 krpm. The experimental results show the severity of subsynchronous motions
is related to the amount of imbalance in the rotor. Surprisingly enough, external air
pressurization on one side of the foil bearings acted to reduce the amplitudes of motion
while the rotor crossed its critical speeds. An air-film hovering effect may have
enhanced the sliding of the bumps thus increasing the bearings damping action. The
tests also demonstrate that increasing the gas feed pressure ameliorates the amplitudes of subsynchronous motions due to the axial flow retarding the circumferential flow velocity
development. A finite element rotordynamic analysis models the test rotor and uses
predicted bearing force coefficients from the static equilibrium GFB load analysis. The
rotordynamic analysis predicts critical speeds at ~8 krpm and ~9 krpm, which correlate
well with test critical speeds. Predictions of rotordynamic stability are calculated for the
test speed range (0 to 25 krpm), showing unstable operation for the rotor/bearing system
starting at 12 krpm and higher. Predictions and experimental results show good
agreement in terms of critical speed correlation, and moderate displacement amplitude
discrepancies for some imbalance conditions. Post-test inspection of the rotor evidenced
sustained wear at the locations in contact with the bearings' axial edges. However, the
foil bearings are almost in pristine condition; except for top foil coating wear at the
bearing edges and along the direction of applied static load.
|
2 |
Novel MEMS Tunable Capacitors with Linear Capacitance-Voltage Response Considering Fabrication UncertaintiesShavezipur, Mohammad January 2008 (has links)
Electrostatically actuated parallel-plate MEMS tunable capacitors are desired elements for different applications including sensing, actuating and communications and RF (radio frequency) engineering for their superior characteristics such as quick response, high Q-factor and small size. However, due to the nature of their coupled electrostatic-structural physics, they suffer from low tuning range of 50% and have nonlinear capacitance-voltage (C-V) responses which are very sensitive to the voltage change near pull-in voltage. Numerous studies in the literature introduce new designs with high tunability ranging from 100% to over 1500%, but improvement of the nonlinearity and high sensitivity of the capacitor response have not received enough attention.
In this thesis, novel highly tunable capacitors with high linearity are proposed to reduce sensitivity to the voltage changes near pull-in. The characteristic equations of a perfectly linear capacitor are first derived for two- and three-plate capacitors to obtain insight for developing linear capacitance-voltage responses. The devices proposed in this research may be classified into three categories: designs with nonlinear structural rigidities, geometric modifications and flexible moving electrodes.
The concept of nonlinear supporting beams is exploited to develop parallel-plate capacitors with partially linear C-V curves. Novel electrodes with triangular, trapezoidal, butterfly, zigzag and fishbone shapes and structural/geometric nonlinearities are used to increase the linearity and tuning ratio of the response. To investigate the capacitors' behavior, an analytical approximate model is developed which can drastically decrease the computation time. The model is ideal for early design and optimization stages. Using this model, design variables are optimized for maximum linearity of the C-V responses. The results of the proposed modeling approach are verified by ANSYS FEM simulations and/or experimental data. When the fabrication process has dimensional limitations, design modifications and geometric enhancements are implemented to improve the linearity of the C-V response. The design techniques proposed in this thesis can provide tunabilities ranging from 80% to over 350% with highly linear regions in resulting C-V curves. Due to the low sensitivity of the capacitance to voltage changes in new designs, the entire tuning range is usable.
Furthermore, the effect of fabrication uncertainties on parallel-plate capacitors performance is studied and a sensitivity analysis is performed to find the design variables with maximum impact on the C-V curves. An optimization method is then introduced to immunize the design against fabrication uncertainties and to maximize the production yield for MEMS tunable capacitors. The method approximates the feasible region and the probability distribution functions of the design variables to directly maximize the yield. Numerical examples with two different sets of design variables demonstrate significant increase in the yield. The presented optimization method can be advantageously utilized in design stage to improve the yield without increasing the fabrication cost or complexity.
|
3 |
Novel MEMS Tunable Capacitors with Linear Capacitance-Voltage Response Considering Fabrication UncertaintiesShavezipur, Mohammad January 2008 (has links)
Electrostatically actuated parallel-plate MEMS tunable capacitors are desired elements for different applications including sensing, actuating and communications and RF (radio frequency) engineering for their superior characteristics such as quick response, high Q-factor and small size. However, due to the nature of their coupled electrostatic-structural physics, they suffer from low tuning range of 50% and have nonlinear capacitance-voltage (C-V) responses which are very sensitive to the voltage change near pull-in voltage. Numerous studies in the literature introduce new designs with high tunability ranging from 100% to over 1500%, but improvement of the nonlinearity and high sensitivity of the capacitor response have not received enough attention.
In this thesis, novel highly tunable capacitors with high linearity are proposed to reduce sensitivity to the voltage changes near pull-in. The characteristic equations of a perfectly linear capacitor are first derived for two- and three-plate capacitors to obtain insight for developing linear capacitance-voltage responses. The devices proposed in this research may be classified into three categories: designs with nonlinear structural rigidities, geometric modifications and flexible moving electrodes.
The concept of nonlinear supporting beams is exploited to develop parallel-plate capacitors with partially linear C-V curves. Novel electrodes with triangular, trapezoidal, butterfly, zigzag and fishbone shapes and structural/geometric nonlinearities are used to increase the linearity and tuning ratio of the response. To investigate the capacitors' behavior, an analytical approximate model is developed which can drastically decrease the computation time. The model is ideal for early design and optimization stages. Using this model, design variables are optimized for maximum linearity of the C-V responses. The results of the proposed modeling approach are verified by ANSYS FEM simulations and/or experimental data. When the fabrication process has dimensional limitations, design modifications and geometric enhancements are implemented to improve the linearity of the C-V response. The design techniques proposed in this thesis can provide tunabilities ranging from 80% to over 350% with highly linear regions in resulting C-V curves. Due to the low sensitivity of the capacitance to voltage changes in new designs, the entire tuning range is usable.
Furthermore, the effect of fabrication uncertainties on parallel-plate capacitors performance is studied and a sensitivity analysis is performed to find the design variables with maximum impact on the C-V curves. An optimization method is then introduced to immunize the design against fabrication uncertainties and to maximize the production yield for MEMS tunable capacitors. The method approximates the feasible region and the probability distribution functions of the design variables to directly maximize the yield. Numerical examples with two different sets of design variables demonstrate significant increase in the yield. The presented optimization method can be advantageously utilized in design stage to improve the yield without increasing the fabrication cost or complexity.
|
4 |
Experimental identification of structural force coefficients in a bump-type foil bearingBreedlove, Anthony Wayne 02 June 2009 (has links)
This thesis presents further experimentation and modeling for bump-type gas foil
bearings used in oil-free turbomachinery. The effect of shaft temperature on the
measured structural force response of foil bearings is of importance for reliable high
temperature applications. During actual operation with shaft rotation, the bearing
structural parameters are coupled to the effects of a hydrodynamic gas film layer, thus
determining the overall bearing load performance.
A 38.17 mm inner diameter foil bearing, Generation II, is mounted on an affixed
non-rotating hollow shaft with an outer diameter of 38.125 mm. A cartridge heater
inserted into the shaft provides a controllable heat source. The clearance between the
shaft and the foil bearing increases with increasing shaft temperatures (up to 188°C). A
static load (ranging from 0 N to 133 N) is applied to the bearing housing, while
measuring the resulting bearing displacement, which represents the compliant structure
deflection. Static load versus displacement tests render the bearing static structural
stiffness. As the shaft temperature increases, the static test results indicate that the
bearing structural stiffness decreases by as much as 70% depending on the bearing
orientation. A dynamic load test setup includes a rigid shaft support structure and a
suspended electromagnetic shaker. Dynamic load (from 13 N to 31 N) test results show
that the test foil bearing stiffness increases by as much as 50% with amplitude of
dynamic load above a lightly loaded region, nearly doubles with frequency up to 200 Hz,
and decreases by a third as shaft temperature increases. A stick slip phenomenon increases the bearing stiffness at higher frequencies for all the amplitudes of dynamic
load tested. The test derived equivalent viscous damping is inversely proportional to
amplitude of dynamic load, excitation frequency, and shaft temperature. Further, the
estimated bearing dry friction coefficient decreases from 0.52 to 0.36 with amplitude of
dynamic load and stays nearly constant as shaft temperature increases.
Test results identify static and dynamic bearing parameters for increasing shaft
temperature. These experimental results provide a benchmark for predictions from
analytical models in current development and are essential to establish sound design
practices of the compliant bearing structure.
|
5 |
Structural Stiffness Gradient along a Single Nanofiber and Associated Single Cell ResponseMeehan, Sean 28 May 2013 (has links)
Cell-substrate interactions are important to study for development of accurate in vitro research platforms. Recently it has been demonstrated that physical microenvironment of cells directly affects cellular motility and cytoskeletal arrangement. Specifically, previous studies have explored the role of material stiffness (Young's modulus: N/m2) on cell behavior including attachment, spreading, migration, cytoskeleton arrangement (stress fiber and focal adhesion distribution) and differentiation.
In this study using our recently described non-electrospinning fiber manufacturing platform, customized scaffolds of suspended nanofibers are developed to study single cell behavior in a tunable structural stiffness (N/m) environment. Suspended fibers of three different diameters (400, 700 and 1200 nm) are deposited in aligned configurations in two lengths of 1 and 2 mm using the previously described STEP (Spinneret based Tunable Engineered Parameters) platform. These fibers present a gradient of structural stiffness to the cells at constant material stiffness. Single cells attached to fibers are constrained to move along the fiber axis and with increase in structural stiffness are observed to spread to longer lengths, put out longer focal adhesions, have elongated nucleus with decreased migration rates. Furthermore, more than 60% of cell population is observed to migrate from areas of low to high structural stiffness. Additionally dividing cells are observed to round up and daughter cells are observed to migrate away from each other after division. Interestingly, dividing rounded cells are found to be anchored to the fibers through thin protrusions emanating from the focal adhesion sites.
These results indicate a substrate stiffness sensing mechanism that goes beyond the traditionally accepted modulus sensing that cells have been shown to respond to previously. From this work, the importance of structural stiffness in cellular mechanosensing at the single cell-nanofiber scaled warrants consideration of the above factors in accurate design of scaffolds in future. / Master of Science
|
6 |
Einfluss der Struktursteifigkeit und der Gestaltung von Drehgestellrahmen auf die lauftechnischen Eigenschaften von SchienenfahrzeugenRubel, Maik 15 February 2010 (has links) (PDF)
Das lauftechnische Verhalten von Schienenfahrzeugen ist fahrzeugseitig geprägt von Eigenschaften, die im Wesentlichen aus der Spurführung, den bewegten Massen, Geometrien und aus der Federungs- und Dämpfungscharakteristik des Fahrzeugs herrühren. Die Federungscharakteristik muss dabei weiter gefasst werden als nur auf die eigentlichen Federelemente des Drehgestells beschränkt. Auch die Steifigkeiten des Wagenkastens und weitere Steifigkeiten innerhalb der Drehgestelle können eine Rolle spielen.
Bezüglich des Drehgestellrahmens wird dabei einem Aspekt bislang wenig Aufmerksamkeit geschenkt – der Bewertung und Optimierung seiner Steifigkeiten und Gestaltung im Hinblick auf die lauftechnischen Eigenschaften des Fahrzeugs. Inhalt der Arbeit ist die Auseinander-setzung mit dieser Thematik.
Den Untersuchungen liegt die repräsentative Ausführungsform eines Drehgestellrahmens in Doppel-H-Form mit 2 Langträgern und 2 Querträgern zu Grunde. Mit Hilfe eines Stabmodells, welches diese Rahmenform nachbildet, werden Berechnungsformeln für die maßgeblichen Steifigkeiten des Drehgestellrahmens aufgestellt.
Durch Parametervariationen am Rechenmodell wird gezeigt, wie sich die Steifigkeitseigenschaften des Drehgestellrahmens durch andere Geometrien, Trägerquerschnitte oder Werkstoffe verändern. Es zeigt sich, dass die Rahmensteifigkeiten selbst in verhältnismäßig großen Wertebereichen variieren können. Da für die lauftechnische Bewertung die Steifigkeiten des Drehgestellrahmens nicht isoliert zu betrachten sind, sondern in Reihenschaltung zu den verhältnismäßig geringen Primärfedersteifigkeiten, relativiert sich diese Aussage.
An Hand statischer und dynamischer lauftechnischer Kenngrößen werden die Auswirkungen der Rahmensteifigkeiten auf das lauftechnische Verhalten des Schienenfahrzeugs untersucht. Dafür werden vereinfachende Rechenmodelle aufgestellt bzw. ein existierendes Mehrkörper-Simulationsprogramm genutzt, womit die gesuchten Werteverläufe bestimmt werden.
Die Wirkung der Drehgestellrahmensteifigkeiten kann danach in unerwünschte, parasitäre Steifigkeiten und erwünschte Steifigkeiten unterschieden werden.
Zu den parasitären Steifigkeiten des Drehgestellrahmens zählen die Biegesteifigkeiten vertikal und quer sowie die Schersteifigkeit. Hier sind bei der Auslegung ausreichend hohe Werte anzustreben. Andernfalls verschlechtern sich Kennziffern wie der Neigungskoeffizient, die kri-tische Geschwindigkeit und das Vertikalschwingverhalten der primär abgefederten Masse. Die Verwindungssteifigkeit des Rahmens wirkt als erwünschte Steifigkeit positiv auf das lauftechnische Verhalten. Mit kleinen Werten kann die Sicherheit gegen Entgleisen in Gleisver-windungen signifikant verbessert werden.
Die gegensinnige Längssteifigkeit des Rahmens würde bei sehr niedrigen Werten den erwünschten Effekt haben, die Führungskräfte im Bogen zu reduzieren. Gleichzeitig ginge dies aber zu Lasten der kritischen Geschwindigkeit, da diese Steifigkeit dort als parasitäre Steifigkeit wirkt. Die Untersuchungen zeigen allerdings, dass die für diese beiden Effekte erforderlichen kleinen Wertebereiche mit dem ausgewählten Rahmentyp nicht erreicht werden.
Weiterhin wird der Einfluss der Drehgestellrahmenmasse untersucht. Durch Werkstoffauswahl und Bauweise können hier Veränderungen erzielt werden. Eine niedrige Rahmenmasse begünstigt das vertikale Schwingungsverhalten und verbessert zusammen mit niedrigen Massenträgheitsmomenten die kritische Geschwindigkeit.
Kleine Werte bei den erwünschten Steifigkeiten und hohe Werte bei den parasitären Steifigkeiten bei gleichzeitig niedriger Masse sind in der konventionellen Rahmenbauweise schwer vereinbar. Aus diesem Grund wird abschließend ein masse- und steifigkeitsoptimierter Dreh-gestellrahmen vorgeschlagen, der diesen Auslegungskonflikt auflösen kann. Die überschläglich kalkulierten Werte für die Steifigkeiten und die Rahmenmasse bestätigen die Vorteile des Konzepts.
Die durchgeführten Untersuchungen belegen, dass es sinnvoll und zweckmäßig ist, die Steifigkeitsparameter des Drehgestellrahmens bereits in der Entwurfsphase des Fahrzeugs zu analysieren und ggf. einer Optimierung zu unterziehen. Mit den vorgestellten Berechnungs-werkzeugen wird eine geeignete und zeitsparende Möglichkeit dafür aufgezeigt.
|
7 |
Einfluss der Struktursteifigkeit und der Gestaltung von Drehgestellrahmen auf die lauftechnischen Eigenschaften von SchienenfahrzeugenRubel, Maik 08 January 2010 (has links)
Das lauftechnische Verhalten von Schienenfahrzeugen ist fahrzeugseitig geprägt von Eigenschaften, die im Wesentlichen aus der Spurführung, den bewegten Massen, Geometrien und aus der Federungs- und Dämpfungscharakteristik des Fahrzeugs herrühren. Die Federungscharakteristik muss dabei weiter gefasst werden als nur auf die eigentlichen Federelemente des Drehgestells beschränkt. Auch die Steifigkeiten des Wagenkastens und weitere Steifigkeiten innerhalb der Drehgestelle können eine Rolle spielen.
Bezüglich des Drehgestellrahmens wird dabei einem Aspekt bislang wenig Aufmerksamkeit geschenkt – der Bewertung und Optimierung seiner Steifigkeiten und Gestaltung im Hinblick auf die lauftechnischen Eigenschaften des Fahrzeugs. Inhalt der Arbeit ist die Auseinander-setzung mit dieser Thematik.
Den Untersuchungen liegt die repräsentative Ausführungsform eines Drehgestellrahmens in Doppel-H-Form mit 2 Langträgern und 2 Querträgern zu Grunde. Mit Hilfe eines Stabmodells, welches diese Rahmenform nachbildet, werden Berechnungsformeln für die maßgeblichen Steifigkeiten des Drehgestellrahmens aufgestellt.
Durch Parametervariationen am Rechenmodell wird gezeigt, wie sich die Steifigkeitseigenschaften des Drehgestellrahmens durch andere Geometrien, Trägerquerschnitte oder Werkstoffe verändern. Es zeigt sich, dass die Rahmensteifigkeiten selbst in verhältnismäßig großen Wertebereichen variieren können. Da für die lauftechnische Bewertung die Steifigkeiten des Drehgestellrahmens nicht isoliert zu betrachten sind, sondern in Reihenschaltung zu den verhältnismäßig geringen Primärfedersteifigkeiten, relativiert sich diese Aussage.
An Hand statischer und dynamischer lauftechnischer Kenngrößen werden die Auswirkungen der Rahmensteifigkeiten auf das lauftechnische Verhalten des Schienenfahrzeugs untersucht. Dafür werden vereinfachende Rechenmodelle aufgestellt bzw. ein existierendes Mehrkörper-Simulationsprogramm genutzt, womit die gesuchten Werteverläufe bestimmt werden.
Die Wirkung der Drehgestellrahmensteifigkeiten kann danach in unerwünschte, parasitäre Steifigkeiten und erwünschte Steifigkeiten unterschieden werden.
Zu den parasitären Steifigkeiten des Drehgestellrahmens zählen die Biegesteifigkeiten vertikal und quer sowie die Schersteifigkeit. Hier sind bei der Auslegung ausreichend hohe Werte anzustreben. Andernfalls verschlechtern sich Kennziffern wie der Neigungskoeffizient, die kri-tische Geschwindigkeit und das Vertikalschwingverhalten der primär abgefederten Masse. Die Verwindungssteifigkeit des Rahmens wirkt als erwünschte Steifigkeit positiv auf das lauftechnische Verhalten. Mit kleinen Werten kann die Sicherheit gegen Entgleisen in Gleisver-windungen signifikant verbessert werden.
Die gegensinnige Längssteifigkeit des Rahmens würde bei sehr niedrigen Werten den erwünschten Effekt haben, die Führungskräfte im Bogen zu reduzieren. Gleichzeitig ginge dies aber zu Lasten der kritischen Geschwindigkeit, da diese Steifigkeit dort als parasitäre Steifigkeit wirkt. Die Untersuchungen zeigen allerdings, dass die für diese beiden Effekte erforderlichen kleinen Wertebereiche mit dem ausgewählten Rahmentyp nicht erreicht werden.
Weiterhin wird der Einfluss der Drehgestellrahmenmasse untersucht. Durch Werkstoffauswahl und Bauweise können hier Veränderungen erzielt werden. Eine niedrige Rahmenmasse begünstigt das vertikale Schwingungsverhalten und verbessert zusammen mit niedrigen Massenträgheitsmomenten die kritische Geschwindigkeit.
Kleine Werte bei den erwünschten Steifigkeiten und hohe Werte bei den parasitären Steifigkeiten bei gleichzeitig niedriger Masse sind in der konventionellen Rahmenbauweise schwer vereinbar. Aus diesem Grund wird abschließend ein masse- und steifigkeitsoptimierter Dreh-gestellrahmen vorgeschlagen, der diesen Auslegungskonflikt auflösen kann. Die überschläglich kalkulierten Werte für die Steifigkeiten und die Rahmenmasse bestätigen die Vorteile des Konzepts.
Die durchgeführten Untersuchungen belegen, dass es sinnvoll und zweckmäßig ist, die Steifigkeitsparameter des Drehgestellrahmens bereits in der Entwurfsphase des Fahrzeugs zu analysieren und ggf. einer Optimierung zu unterziehen. Mit den vorgestellten Berechnungs-werkzeugen wird eine geeignete und zeitsparende Möglichkeit dafür aufgezeigt.
|
8 |
Characterization of Kelvin Cell Cored Sandwich Structures with Analysis and Experiments / Karaktärisering av sandwichstrukturer med Kelvin-cellkärna med analys och experimentGünay, Sabahattin Bora January 2023 (has links)
In order to satisfy the mechanical requirements for space structures, achieving lightweight designs is of the greatest significance. The primary focus of this study is the utilization of Kelvin cell core in the design of sandwich structures for space applications. The research encompasses a variety of production techniques, analyzes, and tests related to the design of sandwich structures with Kelvin cells as the core material. While a variety of configurations are evaluated in a general sense, particular configurations are examined in greater extensive detail. In this context, the structure's bending stiffness, compression stiffness, and vibration characteristics are analyzed. The analytical procedure begins with a simplified structure analysis, followed by the modeling of the actual geometry. According to applicable standards, stiffness values are calculated based on the deflection results of the analyzes. However, it is important to note that the tests performed on the modeled structures are conducted in a laboratory environment using additively manufactured samples. This permits a comparison between the obtained test results and the findings of the analyzes, shedding light on the effect of the manufacturing method. This study demonstrates that the honeycomb sandwich structure is superior in terms of overall stiffness. In addition, a specially designed reinforced Kelvin Cell structure possesses exceptional bending rigidity properties. In light of these findings, it is clear that the combination of Kelvin Cell core and specific reinforcement strategies has the potential to improve the mechanical performance of sandwich structures. In addition, the deformation results revealed by the analyzes showed that the structure can be deformed in large amounts in directions other than the direction of the force it is exposed to. This situation is of great importance for damping in space applications. As a result of vibration analyzes and tests, the effect of stiffness and mass increase in a certain direction on natural frequencies has been revealed, and with 3-point bending tests, the facing elastic modulus and core shear modulus values of the structure have been determined separately and its effect on the sandwich structure has been shown. Accordingly, this study examined and evaluated many aspects of the possible role of the Kelvin Cell in space applications. / För att tillgodose de mekaniska kraven på rymdkonstruktioner är det av största vikt att uppnå lätta konstruktioner. Det primära fokuset för denna studie är utnyttjandet av Kelvin-Cellkärna vid design av sandwichstrukturer för rymdtillämpningar. Forskningen omfattar en mängd olika produktionstekniker, analyser och tester relaterade till design av sandwichstrukturer med Kelvin-Celler som kärnmaterial. En mängd olika konfigurationer utvärderas generellt, medan vissa specifika konfigurationer undersöks mer utförligt på detaljnivå. I detta sammanhang analyseras strukturens böjstyvhet, kompressionsstyvhet och vibrationsegenskaper. Den analytiska proceduren börjar med en förenklad strukturanalys, följt av modellering av den faktiska geometrin. Enligt gällande standarder beräknas styvhetsvärdena baserat på strukturanalysens resultat. Det är dock viktigt att notera att de tester som utförs på de modellerade strukturerna utförs i en laboratoriemiljö med hjälp av additivt tillverkade prover. Detta möjliggör en jämförelse mellan de erhållna testresultaten och resultaten av analysen, vilket belyser effekten av tillverkningsmetoden. Denna studie visar att sandwichstrukturen honeycomb är bäst när det gäller total styvhet. Dessutom har en specialdesignad förstärkt Kelvin-Cellstruktur exceptionella böjstyvhetsegenskaper. I ljuset av dessa fynd är det tydligt att kombinationen av Kelvin-Cellkärna och specifika förstärkningsstrategier har potential att förbättra den mekaniska prestandan hos sandwichstrukturer. Dessutom visade deformationsresultaten från analyserna att strukturen kan deformeras till hög grad i andra riktningar än den kraft som den utsätts för. Denna iaktagelse är av stor betydelse för dämpning i rymdapplikationer. Som ett resultat av vibrationsanalyser och tester har effekten av styvhet och massökning i en viss riktning på naturliga frekvenser upptäckts, och med 3-punkts böjtester har konstruktionens elasticitetsmodul och skjuvmodulsvärden bestämts separat och dess effekt på sandwichstrukturen har visats. Följaktligen undersökte och utvärderade denna studie många aspekter av Kelvin-Cellens möjliga roll i rymdtillämpningar.
|
Page generated in 0.0894 seconds