• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure–Property Relationships Of: 1) Novel Polyurethane and Polyurea Segmented Copolymers and 2) The Influence of Selected Solution Casting Variables on the Solid State Structure of Synthetic Polypeptide Films Based on Glutamate Chemistry

Klinedinst, Derek Bryan 21 November 2011 (has links)
The foundational studies of this dissertation concern the characterization of segmented polyurethanes and polyureas synthesized without the use of chain extenders'molecules that are typically used to promote a microphase separated morphology that gives these materials their useful characteristics. Polyurethanes in which a single asymmetric diisocyanate comprising the whole of the hard segment were found to display poor microphase separation. Conversely, polyurethanes in which a single symmetric diisocyanate composed the hard segment were found to display good microphase separation. The more efficient packing of the symmetric hard segments also led to an increase in hard segment connectivity and hence higher values of storage moduli in these systems. When hydroxyl-terminated diisocyanates were replaced with amine-terminated diisocyanates, polyureas were formed. Here too, diisocyanate symmetry was found to play a key role with symmetric diisocyanates leading to better microphase separation. In addition, the polyurea materials displayed broader service temperature windows than their polyurethane counterparts as the relatively stronger bidentate hydrogen bonding replaced monodentate hydrogen bonding in these materials. A thread-like, microphase separated morphology was visually confirmed using atomic force microscopy. Other techniques such as ambient temperature tensile testing, and wide and small angle x-ray scattering were employed to confirm the presence of the microphase separated structure. The investigation into the effects of diisocyanate chemistry and its symmetry was broadened to incorporate non-chain extended polyurethane materials with different soft segment molecular weights, as well as polyurethanes that did contain chain extenders. Once again the effect of using symmetric versus asymmetric diisocyanates was evident in the structure–property behavior of these systems, with symmetric diisocyanates forming materials that displayed better microphase separation and more connectivity of their hard domains. Lastly, in a departure from the segmented copolymer area, a study was conducted into the influence of casting variables on the solid-state structure of synthetic polypeptide films based on glutamate chemistry. The effect of solvent evaporation was determined to play a key role in the morphology of these polypeptide films. Measured small angle light scattering patterns were compared to computer calculated patterns to reveal information about the structure, shape, and length scale of the polypeptide structure. / Ph. D.
2

Investigation of the Influence of Selected Variables on the Solid State Structure-Property Behavior of Segmented Copolymers

Sheth, Jignesh Pramod 31 January 2005 (has links)
Segmented copolymers are a commercially important class of materials that are utilized in a wide variety of applications. In these systems a relatively large number of variables such as backbone chemistry, segment molecular weight, and the overall molecular weight of the copolymer can be independently controlled to engineer materials with targeted properties. Such versatility also means that a large number of variables can influence the morphology and therefore, properties and performance of segmented copolymers. In this dissertation, the influence of selected variables on the solid state structure-property behavior of segmented poly(ether-block-amide), polyurethane, polyurethaneurea, and polyurea copolymers is explored. The specific variables which have been utilized singly or in conjunction with others are hard segment crystallizability, crystallization conditions, hard segment content, soft segment type and molecular weight, nature of hydrogen bonding, extent of inter-segmental hydrogen bonding, segment symmetry, and chain architecture. In poly(ether-block-amide)s, it was found that the morphology of both the crystalline and the amorphous phase depend upon the polyamide content of the sample and, as expected, the crystallization conditions. A comparison of polydimethylsiloxane based segmented polyurethanes with their polyurea counterparts demonstrated that for a constant hard segment content the soft segment molecular weight particularly governs the extent of microphase separation in these materials. The nature of hydrogen bonding, monodentate or bidentate, also strongly influences their mechanical response. Remarkably, the polyurea sample with a polydimethylsiloxane molecular weight of 7000 g/mol and a hard segment content of 25 wt % exhibited a remarkable service temperature window (for rubber-like behavior) of ca. 230°C (from -55°C to 175°C) whereas it was ca. 200°C wide (from -55°C to 145°C) for the equivalent polyurethane sample. The extremely high chemical incompatibility between the polydimethylsiloxane of sufficiently high molecular weight and urethane or urea segment is expected to generate a relatively sharp interface between the soft matrix and the dispersed hard domains. Therefore, a polyether co-soft segment was incorporated in a controlled manner along the chain backbone, which resulted in inter-segmental hydrogen bonding between the ether and the urea segments. The consequent segmental mixing gave rise to a gradient interphase, which led to a significant improvement in the tensile strength, and elongation at break in selected polydimethylsiloxane segmented polyurea copolymers. The importance of the hydrogen bonding network in model polyurethaneurea copolymers was also explored by utilizing LiCl as molecular probe. It has been demonstrated that hydrogen bonding plays an important role, over and above microphase separation, in promoting the long-range connectivity of the hard segments and the percolation of the hard phase through the soft matrix. The incorporation of hard segment branching in these polyurethaneurea also reduced the ability of the hard segments to pack effectively and establish long-range connectivity. The disruption of the percolated hard phase resulted in a systematic softening of the copolymers. The role of chain architecture in governing the structure/property/processing of segmented was also investigated by comparing highly branched segmented polyurethaneureas with their linear analogs. These copolymers were based on poly(propylene oxide) or poly(tetramethylene oxide) as the soft segments The highly branched copolymers utilized in this dissertation were able to develop a microphase morphology similar to their linear analogs. Particularly noteworthy, and surprising, was the observation of weak second order interference shoulder in the respective small angle X-ray scattering profiles of the highly branched samples based on poly(propylene oxide) of MW 8200 and 12200, indicating the presence of at least some level of long-range order of the hard domains in these samples. Tapping-mode atomic force microscopy phase images of these two samples clearly confirmed the small angle X-ray scattering results. In addition to the strain induced crystallization of the poly(tetramethylene oxide) MW 2000 g/mol based linear polyurethaneureas, the highly branched analog of this sample also exhibited similar behavior at ambient temperature and uniaxial deformation of ca. 400 % strain. Wide angle X-ray scattering confirmed the above observation. The reduced ability of the branched polymers to entangle resulted in slightly poorer mechanical properties, such as tensile strength, elongation at break, and stress relaxation as compared to their linear analogs. However, primarily due to their reduced entanglement density, the branched polyurethaneureas had significantly lower ambient temperature solution viscosity as compared to their linear polyurethaneurea analogs. Therefore, these highly branched polyurethaneureas can be more easily processed than the latter materials. Finally, it was demonstrated that non-chain extended segmented polyurethane and polyurea copolymers in which the hard segment is based on only a single diisocyanate molecule may well exhibit properties, such as the breadth of the service window, the average plateau modulus, stiffness, tensile strength, and elongation at break that are similar to chain extended segmented copolymers that possess distinctly higher hard segment content. A careful control of the hard segment symmetry and the nature of the hydrogen bonding is necessary to achieve such improved performance in the non-chain extended systems. Therefore, the results of this study provide new direction for the production of thermoplastic segmented copolymers with useful structural properties. / Ph. D.

Page generated in 0.0971 seconds