• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Glucose and Glucosamine Derivatives as Novel Low Molecular Weight Gelators

Cheuk, Sherwin 19 December 2008 (has links)
Low molecular weight gelators (LMWGs) are small molecules that are capable of entrapping solvents to form a gel in organic solvents or aqueous solution. These compounds rely solely on noncovalent forces to form the fibrous networks necessary to entrap a variety of solvents. The organogels and hydrogels thus formed could have applications in a variety of fields from environmental to biological to medicinal. Carbohydrates are ideal starting materials to synthesize LMWGs, because of their natural abundance, dense chirality, and biocompatibility. D-Glucose is the most common monosaccharide and D-glucosamine is isolated from natural sources, such as crab shells. Several series of compounds were synthesized using compounds 1-3 as the starting materials. These include esters, carbamates, amides, and ureas. The structure and gelation relationship was analyzed to obtain guidelines for designing new LMWGs. Compound 1 is a simple derivative of D-glucose and its terminal alkynyl esters and saturated carbamates are effective gelators. Compound 2 is a simple derivative of D-glucosamine and its amide and urea derivatives are also effective gelators. Compound 3 is formed from the deoxygenation of D-glucose. 1OOHOOCH3OHOPh2OOHOOCH3NH2OPh3OOHOOHOPh The design, synthesis and gelation properties of several classes of sugar based low molecular organo/hydrogelators will be discussed in this thesis in chapters 2, 3, and 4. After obtaining highly effective organo/hydrogelators, potential applications of these novel molecular systems can be explored. Some preliminary study on using one of the gelator in enzyme assay has shown that it is possible to utilize the hydrogels to immobilize enzymes. However, future research can explore further on the applications of these gelators.

Page generated in 0.1703 seconds