1 |
Tuning of PID Controllers by £h-SensitivityLien, I-Sheng 16 August 2001 (has links)
Since uncertainty exists inevitably in control systems, it is questionable whether the controller, designed to compensate a nominal plant well, still guarantees the criteria of robust stability and robust H¡Û performance for the perturbed plant. In this thesis, controller parameters tuning based on the sensitivity concept of structured singular value, called £g-sensitivity, will be adopted to do the parameter adjustment so that, when the influence of uncertainty is considered, the robust stability and robust performance properties of the nominal closed-loop system will be preserved. In view of the time consuming effect of numerical computation and the misjudgment due to discontinuity problem involved in the £g-sensitivity analysis, this thesis proposes the sensitivity concept of skewed structured singular value, called £h-sensitivity, to remedy these drawbacks. Finally, the feasibility of the £h-sensitivity based controller parameters tuning technique is verified by the simulation results of two examples.
|
2 |
Missile autopilot design using Mu-SynthesisBibel, John Eugene 25 August 2008 (has links)
Due to increasingly difficult threats, current air defense missile systems are pushed to the limits of their performance capabilities. In order to defend against these more stressing threats, interceptor missiles require greater maneuverability, faster response time, and increased robustness to more severe environmental conditions. One of the most critical missile system elements is the flight control system, since its time constant is typically half of the total missile system time constant. Conventional autopilot design techniques have worked well in the past, but in order to satisfy future and more stringent design specifications, new design methods are necessary. Robust control techniques (in particular, H-Infinity Control and Mu-Synthesis) and their application to the design of missile autopilots are addressed in this thesis. In addition, conventional autopilot designs are performed as comparative benchmarks. This paper reviews the missile autopilot design problem and presents descriptions of the classical and H-Infinity/Mu design methods. Missile autopilot designs considering both rigid-body dynamics and elastic-body dynamics are presented. Comparisons of the design approaches and results are also discussed. The results show that the application of robust control techniques to the design of missile autopilots can improve the performance and stability robustness characteristics of the flight control system. / Master of Science
|
3 |
Using Linear Fractional Transformations for Clearance of Flight Control Laws / Klarering av Styrlagar för Flygplan med hjälp av Linjära Rationella TransformationerHansson, Jörgen January 2003 (has links)
<p>Flight Control Systems are often designed in linearization points over a flight envelope and it must be proven to clearance authorities that the system works for different parameter variations and failures all over this envelope. </p><p>In this thesis µ-analysis is tried as a complement for linear analysis in the frequency plane. Using this method stability can be guaranteed for all static parameter combinations modelled and linear criteria such as phase and gain margins and most unstable eigenvalue can be included in the analysis. A way of including bounds on the parameter variations using parameter dependent Lyapunov functions is also tried. </p><p>To perform µ-analysis the system must be described as a Linear Fractional Transformation (LFT). This is a way of reformulating a parameter dependent system description as an interconnection of a nominal linear time invariant system and a structured parameter block. </p><p>A linear and a rational approximation of the system are used to make LFTs. These methods are compared. Four algorithms for calculation of the upper and lower bounds of µ are evaluated. The methods are tried on VEGAS, a SAAB research aircraft model. </p><p>µ-analysis works quite well for linear clearance. The rational approximation LFT gives best results and can be cleared for the criteria mentioned above. A combination of the algorithms is used for best results. When the Lyapunov based method is used the size of the problem grows quite fast and, due to numerical problems, stability can only be guaranteed for a reduced model.</p>
|
4 |
Using Linear Fractional Transformations for Clearance of Flight Control Laws / Klarering av Styrlagar för Flygplan med hjälp av Linjära Rationella TransformationerHansson, Jörgen January 2003 (has links)
Flight Control Systems are often designed in linearization points over a flight envelope and it must be proven to clearance authorities that the system works for different parameter variations and failures all over this envelope. In this thesis µ-analysis is tried as a complement for linear analysis in the frequency plane. Using this method stability can be guaranteed for all static parameter combinations modelled and linear criteria such as phase and gain margins and most unstable eigenvalue can be included in the analysis. A way of including bounds on the parameter variations using parameter dependent Lyapunov functions is also tried. To perform µ-analysis the system must be described as a Linear Fractional Transformation (LFT). This is a way of reformulating a parameter dependent system description as an interconnection of a nominal linear time invariant system and a structured parameter block. A linear and a rational approximation of the system are used to make LFTs. These methods are compared. Four algorithms for calculation of the upper and lower bounds of µ are evaluated. The methods are tried on VEGAS, a SAAB research aircraft model. µ-analysis works quite well for linear clearance. The rational approximation LFT gives best results and can be cleared for the criteria mentioned above. A combination of the algorithms is used for best results. When the Lyapunov based method is used the size of the problem grows quite fast and, due to numerical problems, stability can only be guaranteed for a reduced model.
|
Page generated in 0.112 seconds