• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8625
  • 1537
  • 756
  • 442
  • 348
  • 291
  • 291
  • 291
  • 291
  • 291
  • 279
  • 234
  • 234
  • 230
  • 225
  • Tagged with
  • 15142
  • 15142
  • 6238
  • 4098
  • 3006
  • 2838
  • 2520
  • 2498
  • 1967
  • 1845
  • 1650
  • 1588
  • 1540
  • 1533
  • 1522
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Effect of beef carcass characteristics and cooler conditions on meat shrinkage

Leising, Jerome D January 2010 (has links)
Digitized by Kansas Correctional Industries
142

Rating scale format and the effectiveness of training raters to minimize rating errors

Kirkeide, Loren K January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
143

Beginning mathematics teachers from alternative certification programs : their success in the classroom and how they achieved it

Ham, Edward January 2011 (has links)
This dissertation focuses on beginning mathematics teachers from alternative certification programs and their perceptions of what is required to be successful. A mixed - methods research study was completed with several goals in mind: (1) identifying how beginning mathematics teachers define success in the classroom during their earliest years, (2) identifying what important factors, attributes, or experiences helped them achieve this success, and (3) determining where these beginning mathematics teachers learned the necessary attributes, or experiences to become successful in the classroom. A sample of beginning mathematics teachers (n = 28) was selected from an alternative certification program in California for a quantitative survey. A subsample of teachers (n = 7) was then selected to participate further in a qualitative semi-structured interview. The results of the study revealed that beginning teachers defined success in their beginning years by their classroom learning environment, creating and implementing engaging lessons, and a belief in their own ability to grow professionally as educators. Mathematics content knowledge, classroom management, collaboration with colleagues and coaches, reflection, a belief in one's ability to grow professionally as a teacher, a belief in the ability to have a positive impact on students, personality, and previous leadership experiences were several of the factors, attributes, or experiences identified as most important by the participating teachers. The participating teachers also felt that before and after, but not during, their teacher preparation program were the stages of teacher development that best instilled the necessary factors, attributes, or experiences to become successful in a mathematics classroom.
144

Asian American college students' mathematics success and the model minority stereotype

Jo, Lydia Hyeryung January 2012 (has links)
The often aggregated reports of academic excellence of Asian American students as a whole, compared to students from other ethnic groups offers compelling evidence that Asian Americans are more academically successful than their ethnic counterparts, particularly in the area of mathematics. These comparative data have generated many topics of discussion including the model minority stereotype: a misconception that all Asian Americans are high academic achievers. Research has shown that this seemingly positive stereotype produces negative effects in Asian students. The aim of this study is to examine differences in mathematics success levels and beliefs about the model minority stereotype among different generations of Asian American college students. This study focuses on comparing three different generations of Asian American students with respect to: (1) their success and confidence in mathematics, (2) their personal views on the factors that contribute to their success, (3) their perceptions of the model minority stereotype and (4) how they believe the stereotype affects them. In this mixed methods study, a sample of n = 117 Asian American college students participated in an online survey to collect quantitative data and a subsample of n = 9 students were able to participate in a semi-structured interview. The results of the study indicated that there were almost no differences in either the mathematics success and confidence level, or in the perceptions and perceived effects of the model minority stereotype across generations. Quantitative results showed that all generations of Asian Americans generally are confident in their mathematics abilities. Qualitative analysis showed that the students felt that there were three reasons for their level of success: parental influence, differences in the education system between the U.S. and their home country, and using mathematics and science to get ahead academically as their native English speaking peers tend to be ahead of them in the liberal arts due to language barriers. Though there were mixed feelings among the sample subjects about the validity of the model minority stereotype, all three generations of Asian American students felt peer pressure from the stereotype to excel in mathematics, more frequently in high school than in college.
145

Analysis of Mathematical Fiction with Geometric Themes

Shloming, Jennifer Rebecca January 2012 (has links)
Analysis of mathematical fiction with geometric themes is a study that connects the genre of mathematical fiction with informal learning. This study provides an analysis of 26 sources that include novels and short stories of mathematical fiction with regard to plot, geometric theme, cultural theme, and presentation. The authors' mathematical backgrounds are presented as they relate to both geometric and cultural themes. These backgrounds range from having little mathematical training to advance graduate work culminating in a Ph.D. in mathematics. This thesis demonstrated that regardless of background, the authors could write a mathematical fiction novel or short story with a dominant geometric theme. The authors' pedagogical approaches to delivering the geometric themes are also discussed. Applications from this study involve a pedagogical component that can be used in a classroom setting. All the sources analyzed in this study are fictional, but the geometric content is factual. Six categories of geometric topics were analyzed: plane geometry, solid geometry, projective geometry, axiomatics, topology, and the historical foundations of geometry. Geometry textbooks aligned with these categories were discussed with regard to mathematical fiction and formal learning. Cultural patterns were also analyzed for each source of mathematical fiction. There were also an analysis of the integration of cultural and geometric themes in the 26 sources of mathematical fiction; some of the cultural patterns discussed are gender bias, art, music, academia, mysticism, and social issues. On the basis of this discussion, recommendations for future studies involving the use of mathematical fiction were made.
146

Learning the Rules of the Game: The Nature of Game and Classroom Supports When Using a Concept-Integrated Digital Physics Game in the Middle School Science Classroom

Stewart Jr., Phillip January 2013 (has links)
Games in science education is emerging as a popular topic of scholarly inquiry. The National Research Council recently published a report detailing a research agenda for games and science education entitled Learning Science Through Computer Games and Simulations (2011). The report recommends moving beyond typical proof-of-concept studies into more exploratory and theoretically-based work to determine how best to integrate games into K-12 classrooms for learning , as well as how scaffolds from within the game and from outside the game (from peers and teachers) support the learning of applicable science. This study uses a mixed-methods, quasi-experimental design with an 8th grade class at an independent school in southern Connecticut to answer the following questions: 1. What is the nature of the supports for science content learning provided by the game, the peer, and the teacher, when the game is used in a classroom setting? 2. How do the learning gains in the peer support condition compare to the solo play condition, both qualitatively and quantitatively? The concept-integrated physics game SURGE (Scaffolding Understanding through Redesigning Games for Education) was selected for this study, as it was developed with an ear towards specific learning theories and prior work on student understandings of impulse, force, and vectors. Stimulated recall interviews and video observations served as the primary sources and major patterns emerged through the triangulation of data sources and qualitative analysis in the software QSR NVivo 9. The first pattern which emerged indicated that scaffolding from within the game and outside the game requires a pause in game action to be effective, unless that scaffolding is directly useful to the player in the moment of action. The second major pattern indicated that both amount and type of prior gaming experience has somewhat complex effects on both the uses of supports and learning outcomes. In general, a high correlation was found between students who were more successful navigating supports from the game, the teacher, and the peer and higher gain scores from pre- to posttest. However, students with a lot of prior game experience that found the game to be easy without much assistance did not do as well from pre- to posttest as they did not need as much assistance from the game to do well and therefore missed out on important physics connections to impulse, force, and vectors. However, those students with little prior game experience did not find game scaffolds as useful and did not do as well from pre- to posttest without significant teacher and peer support to bolster or supplant the game's intended scaffolding. Implications for educators, educational game designers, and games in science education researchers are presented. It is argued that teachers must find ways to extract those scaffolds from the game which are easy to miss or require failure to activate so that all students, even those who find the game easy, are exposed to the intended learning in the game. Ideally, game designers are encouraged to find new ways to present scaffolds such that players of any ability can benefit from the connections from the game to physics.
147

Teaching sustainability as a social issue: Learning from three teachers

Shuttleworth, Jay Matthew January 2013 (has links)
Many researchers cite living more sustainably as humans' most pressing long- term challenge. Living sustainably can be defined as meeting one's needs without interfering with future generations ability to meet their needs. Engaging students with the social causes and effects of sustainability issues may help to address and create dialogue about our own needs and those of future generations. Unfortunately, no studies examine how teachers deliver this topic as a social issue in their classrooms. Through the research question, "What are the curricular, pedagogical, and assessment strategies of three teachers when they teach the social issues of sustainability education?" this qualitative case study seeks findings useful to the education field. For example, teachers might learn how peers plan, implement, and assess this sort of instruction. Teacher educators could create or update pre- service education sustainability frameworks. Or, researchers might study the findings' impact on existing educational paradigms. Thus, this study advances understanding within education on ways to sustain humanity's prosperity.
148

Exploring the Impact of the Implementation of Reality Pedagogy: Self-efficacy, Social Capital, and Distributed Cognition

Taher, Tanzina January 2012 (has links)
As our current society becomes more and more dependent on science and technology, it calls for our students to be more science-oriented and involved in science. However, as statistics show, our urban students are not as engaged in science classes, resulting in poor performance in science. With this fact in mind, this study explores a recently developed pedagogic approach called reality pedagogy. In this qualitative ethnographic case study, the yearlong experience of six urban students enrolled in a science class of an urban public secondary school where the pedagogic tools of reality pedagogy were being implemented is examined. The study examines reality pedagogy via the lens of self-efficacy, social capital, and distributed cognition frames in order to understand the contribution the tools of reality pedagogy offer. Participants in this study included immigrant and non-immigrant urban science students as well as students with learning disabilities (LD) and students with no learning disabilities (NLD). Findings of this study revealed that participating in reality pedagogy facilitated the development of self-efficacy in science of three of the four students, where one was an LD student and two were NLD students. The experiences of all four of these students are discussed in detail. The study also revealed that the two immigrant participants of reality pedagogy were positively impacted, in that both students' shared social capital was positively impacted and the frame of distributed cognition played a role in their science classroom participation.
149

Cross National Comparisons of Excellence in University Mathematics Instructors - An Analysis of Key Characteristics of Excellent Mathematics Instructors based on Teacher Evaluation Forms

Grant, Frida Kristin January 2014 (has links)
Mathematicians have, historically, not been overly successful in their approach to teaching and much research has looked in to why this is so. Teaching mathematics is based on a solid understanding of the subject; however, instructors also need to be able to efficiently communicate the subject to their students. The purpose of this study was to establish common characteristics of excellent university lecturers in mathematics by applying Marsh's ten evaluation categories. This thesis sought to identify which of these areas were most consistently demonstrated by those university lecturers receiving the highest student ratings and whether there are any areas in which excellent lecturers received inconsistent ratings. The dissertation further used these observations to provide evidence of particular characteristics that are more important than others in the development of excellent university mathematics instructors. This study collected quantitative data in the shape of teacher evaluation forms from both Swedish and US mathematics institutions. The data suggests that instructors acknowledged to be excellent receive high ratings in areas concerning subject matter knowledge, explanatory ability, the fairness of examinations, and enthusiasm and commitment to students. Overall, items that explain a lecturer's persona, character and personality are generally more highly correlated with ratings for the instructor himself whereas categories which describe the preparation, organization and structure of the course, are generally more highly correlated with a student's overall learning experience and Overall Course rating.
150

Relationships between Conceptual Knowledge and Reasoning about Systems: Implications for Fostering Systems Thinking in Secondary Science

Lyons, Cheryl January 2014 (has links)
Reasoning about systems is necessary for understanding many modern issues that face society and is important for future scientists and all citizens. Systems thinking may allow students to make connections and identify common themes between seemingly different situations and phenomena, and is relevant to the focus on cross-cutting concepts in science emphasized in the Framework for K-12 Science Education Standards (NRC, 2011) and Next Generation Science Standards (Achieve, 2013). At the same time, there is emerging empirical and theoretical support in science education for fostering the development of science reasoning alongside content understanding, as opposed to the perspective that reasoning occurs after a certain threshold of content mastery has been achieved. However, existing research on systems thinking has treated this reasoning as a set of universal skills and neglected the role of content, or has conceptualized a progression in which content mastery precedes systems reasoning without consideration of rudimentary forms of reasoning. This study focused on describing individual variations in the ways that 8th and 9th grade students reason about changes in a system over time to identify characteristics of systems and pre-systems thinking and to investigate the relationship between this reasoning and the students' application of content. This study found a generally linear relationship between content and reasoning, with interesting deviations from this trend among students who demonstrated at least a moderate level of content understanding but had not yet achieved mastery. Four profiles of this relationship emerged which warrant different instructional support. Implications are presented for science educators and developers of curricula and assessments. This includes recommendations for learning objectives, the design of written curriculum materials, and the development of assessments that aim to promote and measure reasoning about systems in science.

Page generated in 0.1175 seconds