• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 12
  • 7
  • 7
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cartan subalgebras of locally finite Lie algebras /

Alam, Mahmood. January 2008 (has links)
Zugl.: Darmstadt, Techn. University, Diss., 2008.
2

A lattice theory for algebras

Bowman, K. January 1988 (has links)
No description available.
3

Banach function algebras and their properties

Bland, William J. January 2001 (has links)
No description available.
4

Maximal subalgebras of finite-dimensional algebras: with connections to representation theory and geometry

Sistko, Alexander Harris 01 May 2019 (has links)
Let $k$ be a field and $B$ a finite-dimensional, associative, unital $k$-algebra. For each $1 \le d \le \dim_kB$, let $\operatorname{AlgGr}_d(B)$ denote the projective variety of $d$-dimensional subalgebras of $B$, and let $\operatorname{Aut}_k(B)$ denote the automorphism group of $B$. In this thesis, we are primarily concerned with understanding the relationship between $\operatorname{AlgGr}_d(B)$, the representation theory of $B$, and the representation theory of $\operatorname{Aut}_k(B)$. We begin by proving fundamental structure theorems for the maximal subalgebras of $B$. We show that maximal subalgebras of $B$ come in two flavors, which we call split type and separable type. As a consequence, we provide complete classifications for maximal subalgebras of semisimple algebras and basic algebras. We also demonstrate that the maximality of $A$ in $B$ is related to the representation theory of $B$, through the separability of functors closely associated with the extension $A \subset B$. The rest of this document showcases applications of these results. For $k = \bar{k}$, we compute the maximal dimension of a proper subalgebra of $B$. We discuss the problem of computing the minimal number of generators for $B$ (as an algebra), and provide upper and lower bounds for basic algebras. We then study $\operatorname{AlgGr}_d(B)$ in detail, again when $B$ is basic. When $d = \dim_kB-1$, we find a projective embedding of $\operatorname{AlgGr}_d(B)$, and explicitly describe its associated homogeneous vanishing ideal. In turn, we provide a simple description of its irreducible components. We find equivalent conditions for this variety to be a finite union of $\operatorname{Aut}_k(B)$-orbits, and describe several classes of algebras which satisfy these conditions. Furthermore, we provide an algebraic description for the orbits of connected maximal subalgebras of type-$\mathbb{A}$ path algebras. Finally, we study the fixed-point variety $\operatorname{AlgGr}_d(B)^{\operatorname{Aut}_k(B)}$ (for general $d$), which connects naturally to the representation theory of $\operatorname{Aut}_k(B)$. We investigate the case where $B$ is a truncated path algebra over $\mathbb{C}$ in detail.
5

Classification of Isometry Algebras of Solutions of Einstein's Field Equations

Hwang, Eugene 01 August 2019 (has links)
Since Schwarzschild found the first solution of the Einstein’s equations, more than 800 solutions were found. Solutions of Einstein’s equations are classified according to their Lie algebras of isometries and their isotropy subalgebras. Solutions were taken from the USU electronic library of solutions of Einstein’s field equations and the classification used Maple code developed at USU. This classification adds to the data contained in the library of solutions and provides additional tools for addressing the equivalence problem for solutions to the Einstein field equations. In this thesis, homogeneous spacetimes, hypersurface-homogeneous spacetimes, Robinson-Trautman solutions, and some famous black hole solutions have been classified.
6

On the Conjugacy of Maximal Toral Subalgebras of Certain Infinite-Dimensional Lie Algebras

Gontcharov, Aleksandr 10 September 2013 (has links)
We will extend the conjugacy problem of maximal toral subalgebras for Lie algebras of the form $\g{g} \otimes_k R$ by considering $R=k[t,t^{-1}]$ and $R=k[t,t^{-1},(t-1)^{-1}]$, where $k$ is an algebraically closed field of characteristic zero and $\g{g}$ is a direct limit Lie algebra. In the process, we study properties of infinite matrices with entries in a B\'zout domain and we also look at how our conjugacy results extend to universal central extensions of the suitable direct limit Lie algebras.
7

On the Conjugacy of Maximal Toral Subalgebras of Certain Infinite-Dimensional Lie Algebras

Gontcharov, Aleksandr January 2013 (has links)
We will extend the conjugacy problem of maximal toral subalgebras for Lie algebras of the form $\g{g} \otimes_k R$ by considering $R=k[t,t^{-1}]$ and $R=k[t,t^{-1},(t-1)^{-1}]$, where $k$ is an algebraically closed field of characteristic zero and $\g{g}$ is a direct limit Lie algebra. In the process, we study properties of infinite matrices with entries in a B\'zout domain and we also look at how our conjugacy results extend to universal central extensions of the suitable direct limit Lie algebras.
8

Nova álgebra de Lie simples de dimensão 30 sobre um corpo de característica 2 / A new 30 dimensional simple lie algebra on a field of characteristic 2

Osorio, Oscar Daniel Lopez 05 December 2016 (has links)
S.Skryabin demonstrou que qualquer álgebra de Lie simples de dimensão finita sobre um corpo de característica 2 possui posto toroidal 2. Duas 2- álgebras de Lie de dimensão 31 foram estudadas. Neste trabalho, mostramos que a primeira delas contem uma base toroidal absoluta de dimensão três, assim como a segunda, que foi estudada por Grishkov e Guerreiro anteriormente. Utilizando uma decomposicão de Cartan, exibimos um isomorfismo entre as duas 2- álgebras de Lie de dimensão 31. Este resultado foi sugerido depois de encontrar uma sub álgebra de dimensão 12 n ao solúvel e 7 isomorfas 2-sub álgebras de Lie de dimensão 7 nas duas álgebras. Finalmente, exploramos uma 2- álgebra de Lie de dimensão 34 como o fim de encontrar base toroidal absoluta de dimensão 4. Apoiamos os cálculos com algumas códigos no linguajem de MATLAB que permitiram optimizar e acelerar a pesquisa. / S.Skryabin showed that any finite dimensional simple Lie algebra over a field of characteristic 2 has absolute toral rank 2. Two 31-dimensional 2-algebras were known. In this work, we show that the first of these algebras, contains a 3-dimensional maximal toral subalgebra, as the second one, which was studied by Grishkov e Guerreiro previously. Using a Cartan decomposition we establish an isomorphism between the two 31-dimensional 2-algebras. This result was suggested after finding a 12-dimensional not soluble subalgebra and seven 7-dimensional isomorphic 2-subalgebras in both algebras. Finally, a 34-dimensional 2-Lie algebra was studied in order to find 4-dimensional maximal toral subalgebras. Some computations in this work were performed with help of MATLAB.
9

The Cohomology for the Nil Radical of a Complex Semisimple Lie Algebra

Sawyer, Cameron C. (Cameron Cunningham) 05 1900 (has links)
Let g be a complex semisimple Lie algebra, Vλ an irreducible g-module with high weight λ, pI a standard parabolic subalgebra of g with Levi factor £I and nil radical nI, and H*(nI, Vλ) the cohomology group of Λn'I ⊗Vλ. We describe the decomposition of H*(nI, Vλ) into irreducible £1-modules.
10

[en] CLASSIFICATION OF REAL SEMI-SIMPLE LIE ALGEBRAS BY MEANS OF SATAKE DIAGRAMS / [pt] CLASSIFICAÇÃO DE ÁLGEBRAS DE LIE SEMI-SIMPLES REAIS VIA DIAGRAMAS DE SATAKE

MARTIN PABLO SANTACATTERINA 26 December 2017 (has links)
[pt] Iniciamos o trabalho com uma revisão da classificação de álgebras de Lie semi-simples sobre corposo algebraicamente fechados de caracteristica zero a traves dos Diagramas de Dyinkin. Posteriormente estudamos sigma - sistemas normais e classificamos eles a traves de diagramas de Satake. Finalmente estudamos a estrutura das formas reais de álgebras de Lie semi-simples complexas, explicitando a conexão com os diagramas de Satake e fornecenendo assim uma classificação das mesmas. / [en] We begin the work with a review of the classification of semisimple Lie algebras over an algebraically field of characteristic zero through the Dyinkin Diagrams. Subsequently we study sigma - normal systems and classify them through Satake diagrams. Finally we study the structure of the real forms of complex semi-simple Lie algebras, explaining the connection with the Satake diagrams and thus providing a classification of them.

Page generated in 0.0464 seconds