• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Experimental Study of Single / Two Phase Flow and Heat Transfer in Microchannels

Lin, Chih-yi 27 January 2010 (has links)
An experimental investigation was carried to examine the flow/ thermal field characteristics with/without phase change in the microchannels and compared with the traditional results. There are three parts in this study. The first part investigated the 2-D flow field measured by the micro particle image velocimetry (£gPIV) in a single PMMA microchannel fabricated by an ArF excimer laser. The slip boundary condition in the microchannel wall was also discussed. The second part studied the influence of surface condition (hydrophilic vs hydrophobic) on the flow/thermal field in a micro cooling device which included twenty parallel microchannels, which was fabricated by SU-8 microfabrication technique and replicated by the PDMS replica technique. The UV/ozone device was used to change the PDMS microchannels¡¦ surface condition from hydrophobic to hydrophilic and the £gPIV/£gLIF system was also used to measure the velocity and temperature distribution. The third part investigated the two-phase subcooled flow boiling phenomena (onset of nucleate boiling, boiling curve, flow patterns, bubble departure diameter and frequency) in the seventy-five parallel microchannels fabricated by SU-8 microfabrication technique, and aimed to raise the critical heat flux (CHF) and heat transfer coefficient to enhance the cooling efficiency. Three major methods were used in this study, as follows: (1) To add the cavity angle of £c = 60¢X, 90¢X, and 120¢X on the microchannel side walls. (2) To coat 2 £gm diamond film on the Cu heated surface. (3) To add 1 vol. % Multi-walled Carbon Nanotube (MCNT) into the working medium (deionized water). The goal of this paper is to develop a high heat flux cooling technique and apply the experimental results to solve the cooling problem resulting from the exceedingly high heat flux from the electronic component.
2

Development of a Multi-field Two-fluid Approach for Simulation of Boiling Flows

Setoodeh, Hamed 12 May 2023 (has links)
Safe and reliable operation of nuclear power plants is the basic requirement for the utilization of nuclear energy since accidents can release radioactivity and with that cause irreversible damage to human beings. Reliability and safety of nuclear reactors are highly dependent on the stability of thermal hydraulic processes occurring in them. Nucleate boiling occurs in Pressurized Water Reactors (PWRs) and Boiling Water Reactors (BWRs) as well as in their passive safety systems during an accident. Passive safety systems are solely driven by thermal gradients and gravitational force removing residual heat from the reactor core independent of any external power supply in the case of accidents. Instability of flow boiling in these passive circuits can cause flow oscillations. These oscillations may induce insufficient local cooling and mechanical loads, which threatens the reactors’ safety. Analysis of boiling two-phase flow and associated heat and mass transfer requires an accurate modeling of flow regime transitions and prediction of boiling parameters such as void fraction, steam bubble sizes, heat transfer coefficient, etc. Flow boiling has been intensively investigated through experiments, one-dimensional codes, and Computational Fluid Dynamics (CFD) methods. Costly hardware and no accessibility to all locations in complex geometries restrict the experimental investigation of flow boiling. Since one-dimensional codes such as ATHLET, RELAP and TRACE are ”lumped parameter” codes, they are unable to simulate complex flow boiling transition patterns. In the last decades, with the development of supercomputers, CFD has been considered as a useful tool to model heat and mass transfer occurring in flow boiling regimes. In many industrial applications and system designs, CFD codes and particularly the Eulerian-Eulerian (E-E) two-fluid model are quickly replacing the experimental and analytical methods. However, the application of this approach for flow boiling modelling poses a challenge for the development of bubble dynamics and wall boiling models to predict heat and mass transfer at the heating wall as well as phase-change mechanism. Many empirical and mechanistic models have been proposed for bubble dynamics modelling. Nevertheless, the validity of these models for only a narrow range of operating conditions and their uncertainties limit their applicability and consequently presently necessitate us to calibrate them for a given boundary condition via calibration factors. For that reason, the first aim of this thesis is the development of a bubble dynamics model for subcooled boiling flow, which needs no calibration factor to predict the bubble growth and detachment. This mechanistic model is formulated based on the force balance approach, physics of a single nucleated bubble and several well-developed models to cover the whole bubble life cycle including formation, growth and departure. This model considers dynamic inclination angle and contact angles between the bubble and the heating wall as well as the contribution of microlayer evaporation, thermal diffusion and condensation around the bubble cap. Validation against four experimental flow boiling data sets was conducted with no case-dependent recalibration and yielded good agreement. The second goal is the implementation of the developed bubble dynamics model in the E-E two-fluid model as a sub-model to improve the accuracy of boiling flow simulation and reduce the case dependency. This implementation requires an extension of the nucleation site activation and wall heat-partitioning models. The bubble dynamics and heat-partitioning models were coupled with the Population Balance Model (PBM) to handle bubble interactions and predict the Bubble Size Distribution (BSD). In addition, the contribution of bubble sliding to wall heat transfer, which has been rarely considered in other modelling approaches, is considered. Validation for model implementation in the E-E two-fluid model was made with ten experimental cases including R12 and R134a flow boiling in a pipe and an annulus. These test cases cover a wide range of operating parameters such as wall heat flux, fluid velocity, subcooling temperature and pressure. The validated parameters were the bubble diameter, void fraction, bubble velocity, Interfacial Area Density (IAD), bubble passing frequency, liquid and wall temperatures. Two-phase flow morphologies for an upward flow in a vertical heating pipe may change from bubbly to slug, plug, and annular flow. Since these flow patterns have a great impact on the heat and mass transfer rates, an accurate prediction of them is critical. The aim of this thesis is the implementation of the developed bubble dynamics and heat-partitioning models in the recently developed GENeralized TwO-Phase flow (GENTOP) framework for the modelling of these flow patterns transition as well. An adopted wall heat-partitioning model for high void fractions is presented and for a generic test case, flow boiling regimes of water in a vertical heating pipe were modelled using ANSYS CFX 18.2. Moreover, the impacts of wall superheat, subcooling temperature and fluid velocity on the flow boiling transition patterns and the effects of these patterns on the wall heat transfer coefficient were evaluated.:Nomenclature xi 1 Introduction 1 1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 State-of-the-art in modelling of subcooled flow boiling 11 2.1 Physics of boiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Bubble growth modelling . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 CFD simulation of boiling flows . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 The Eulerian-Eulerian two-fluid model . . . . . . . . . . . . . 21 2.3.2 The Population Balance Model (PBM) . . . . . . . . . . . . . 22 2.3.3 Governing equations of the two-fluid model . . . . . . . . . . 25 2.3.4 Closure models for adiabatic bubbly flow . . . . . . . . . . . . 28 2.3.5 Phase transfer models . . . . . . . . . . . . . . . . . . . . . . 37 2.3.6 The Rensselaer Polytechnic Institute (RPI) wall boiling model 37 2.4 Flow boiling transition patterns in vertical pipes . . . . . . . . . . . . 42 2.5 The GENeralized TwO-Phase flow (GENTOP) concept . . . . . . . . . 45 2.5.1 Treatment of the continuous gas . . . . . . . . . . . . . . . . 46 2.5.2 The Algebraic Interfacial Area Density (AIAD) model . . . . . 46 2.6 Interfacial transfers of continuous gas . . . . . . . . . . . . . . . . . 47 2.6.1 Drag and lift forces . . . . . . . . . . . . . . . . . . . . . . . . 48 2.6.2 Cluster and surface tension forces . . . . . . . . . . . . . . . . 49 2.6.3 Complete coalescence . . . . . . . . . . . . . . . . . . . . . . 50 2.6.4 Entrainment modelling . . . . . . . . . . . . . . . . . . . . . . 51 2.6.5 Turbulence modelling . . . . . . . . . . . . . . . . . . . . . . 51 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 An improved bubble dynamics model for flow boiling 55 3.1 Modelling of the bubble formation . . . . . . . . . . . . . . . . . . . 55 3.1.1 Bubble growth rate . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.2 Force balance . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 ix 3.1.3 Detachment criteria . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.4 Wall heat flux model . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.5 Heat transfer in the heating wall . . . . . . . . . . . . . . . . 70 3.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.1 Discretization dependency study . . . . . . . . . . . . . . . . 72 3.2.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 An improved wall heat-partitioning model 85 4.1 The cavity group activation model . . . . . . . . . . . . . . . . . . . . 85 4.1.1 Bubble sliding length and influence area . . . . . . . . . . . . 88 4.1.2 Model implementation in the Eulerian-Eulerian framework . . 89 4.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.2.1 DEBORA experiments . . . . . . . . . . . . . . . . . . . . . . 90 4.2.2 Subcooled flow boiling of R134a in an annulus . . . . . . . . 102 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5 Modelling of flow boiling patterns in vertical pipes 115 5.1 Adopted wall heat-partitioning model for high void fractions . . . . . 115 5.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.2.1 Effect of wall superheat on the flow boiling transition patterns 118 5.2.2 Effect of flow morphologies on the wall heat transfer coefficient124 5.2.3 Comparison of GENTOP and Eulerian-Eulerian two-fluid models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.4 Effect of subcooling on the flow boiling transition patterns . . 129 5.2.5 Effect of inlet fluid velocity on the flow boiling transition patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6 Conclusions and outlook 133 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 References 137 Declaration 155
3

Spray Cooling For Land, Sea, Air And Space Based Applications, A Fluid Managment System For Multiple Nozzle Spray Cooling And A Guide To High Heat Flux Heater Design

Glassman, Brian 01 January 2005 (has links)
This thesis is divided into four distinct chapters all linked by the topic of spray cooling. Chapter one gives a detailed categorization of future and current spray cooling applications, and reviews the major advantages and disadvantages that spray cooling has over other high heat flux cooling techniques. Chapter two outlines the developmental goals of spray cooling, which are to increase the output of a current system and to enable new technologies to be technically feasible. Furthermore, this chapter outlines in detail the impact that land, air, sea, and space environments have on the cooling system and what technologies could be enabled in each environment with the aid of spray cooling. In particular, the heat exchanger, condenser and radiator are analyzed in their corresponding environments. Chapter three presents an experimental investigation of a fluid management system for a large area multiple nozzle spray cooler. A fluid management or suction system was used to control the liquid film layer thickness needed for effective heat transfer. An array of sixteen pressure atomized spray nozzles along with an imbedded fluid suction system was constructed. Two surfaces were spray tested one being a clear grooved Plexiglas plate used for visualization and the other being a bottom heated grooved 4.5 x 4.5 cm2 copper plate used to determine the heat flux. The suction system utilized an array of thin copper tubes to extract excess liquid from the cooled surface. Pure water was ejected from two spray nozzle configurations at flow rates of 0.7 L/min to 1 L/min per nozzle. It was found that the fluid management system provided fluid removal efficiencies of 98% with a 4-nozzle array, and 90% with the full 16-nozzle array for the downward spraying orientation. The corresponding heat fluxes for the 16 nozzle configuration were found with and without the aid of the fluid management system. It was found that the fluid management system increased heat fluxes on the average of 30 W/cm2 at similar values of superheat. Unfortunately, the effectiveness of this array at removing heat at full levels of suction is approximately 50% & 40% of a single nozzle at respective 10[degrees]C & 15[degrees]C values of superheat. The heat transfer data more closely resembled convective pooling boiling. Thus, it was concluded that the poor heat transfer was due to flooding occurring which made the heat transfer mechanism mainly forced convective boiling and not spray cooling. Finally, Chapter four gives a detailed guide for the design and construction of a high heat flux heater for experimental uses where accurate measurements of surface temperatures and heat fluxes are extremely important. The heater designs presented allow for different testing applications; however, an emphasis is placed on heaters designed for use with spray cooling.

Page generated in 0.3349 seconds