Spelling suggestions: "subject:"subfactors"" "subject:"subfatores""
1 |
Singular subfactors of II_1 factorsWiggins, Alan Daniel 17 September 2007 (has links)
We examine the notion of a-strong singularity for subfactors N of a II1 factor
M, which is a metric quantity that relates the distance of a unitary to a subalgebra
with the distance between that subalgebra and its unitary conjugate. Using work of
Popa, Sinclair, and Smith, we show that there exists an absolute constant 0 < c < 1
such that all singular subfactors are c-strongly singular. Under the hypothesis that
N0 \ hM, eNi is 2-dimensional, we prove that finite index subfactors are 1-strongly
singular with a constant that tends to 1 as the Jones Index tends to infinity and
infinite index subfactors are 1-strongly singular. We provide examples of subfactors
satisfying these conditions using group theoretic constructions. Specifically, if P is a
II1 factor and G is a countable discrete group acting on P by outer automorphisms, we
characterize the elements x of PoG such that x(PoH)x0 PoH for some subgroup
H of G. We establish that proper finite index singular subfactors do not have the
weak asymptotic homomorphism property, in contrast to the case for masas. In the
infinite index setting, we discuss the role of the semigroup of one-sided normalizers
with regards to the question of whether all infinite index singular subfactors have
the weak asymptotic homomorphism property. Finally, we provide a characterization
of singularity for finite index subfactors in terms of the traces of projections in N0 \ hM, eNi and use this result to show that fixed point subfactors of outer Zp for p prime
are regular. The characterization extends to infinite index subfactors by replacing singular with contains its one-sided normalizers.
|
2 |
Geometric properties of outer automorphism groups of free groupsTaylor, Samuel Joseph 01 July 2014 (has links)
This thesis examines geometric aspects of the outer automorphism group of a finitely generate free group. Using recent advances made in understanding mapping class groups as our primary motivation, we refine methods to understand the structure of Out(F_n) via its action on free factors of F_n. Our investigation has a number of applications: First, we give a natural notion of projection between free factors, extending a construction of Bestvina-Feighn. Second, we provide a new method to produce fully irreducible automorphisms of F_n using combinations of automorphism supported on free factors. Finally, we use these results to give a general construction of quasi-isometric embeddings from right-angled Artin groups into Out(F_n). / text
|
Page generated in 0.037 seconds