• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthetic Peptides Model Instability of Cardiac Myosin Subfragment-2

Taei, Nasrin 08 1900 (has links)
Hypertrophic cardiomyopathy (HCM), a heart-related abnormality, is the most prevalent cause of sudden death in young athletes at sporting events. A cluster of cardiomyopathy mutations are localized in β-cardiac myosin at the N-terminal region of subfragment-2. Using resonance energy transfer probes, a synthetic peptide model system was developed to study stability of the coiled coil (S2 fragment) structure by determining monomer-dimer equilibrium of the peptide. Fluorescence resonance energy transfer and MacroModel software suite were used to obtain distance measurements along with measurement of coiled coil formation. The model peptide was used to characterize the effects of disease-causing-mutations and examine potential candidate drugs (polyamines) to counteract effects of mutations causing HCM. Distance measurements between donor and acceptor probes obtained by computational simulation and fluorescence resonance energy transfer (FRET) were consistent. Measurements also agreed with simulations of unlabeled wildtype, indicating coiled coil structural stability of the peptide. Interaction of the site-specific antibody with the peptide strongly inhibited dimerization and destabilized coiled coil structure of the peptide. Presence of negatively charged glutamate residues in the region of subfragment-2 strongly suggested a potential interaction site for positively charged polyamines. Binding of certain polyamines, such as poly-L-Lysine 11 residues and poly-D-Lysine 17 residues, demonstrated the ability to enhance dimerization and improve stability of the coiled coil structure, while some other polyamines were shown to have insignificant impact on the structure. In an attempt to characterize the effect of HCM-causing-mutations, peptides containing E924K mutation and lethal mutation E930 deletion were synthesized. Fluorescence resonance probes were conjugated to the mutant peptides to determine coiled coil formation. Results obtained from both dynamic simulations and resonance energy transfer experiments indicated that these mutations strongly inhibit dimerization, and thus, destabilize coiled coil structure of the peptide. Further experiments were conducted using heterodimers containing a chain of wildtype and a chain of mutant peptide. Both E924K & Edel930 mutations destabilized coiled coil formation and prevented dimerization. This peptide model system would provide a promising tool for drug development targeting HCM-causing-mutations along the S2 region of myosin.
2

Stability of Myosin Subfragment-2 Modulates the Force Produced by Acto-Myosin Interaction of Striated Muscle

Singh, Rohit Rajendraprasad 12 1900 (has links)
Myosin subfragment-2 (S2) is a coiled coil linker between myosin subfragment-1 and light meromyosin (LMM). This dissertation examines whether the myosin S2 coiled coil could regulate the amount of myosin S1 heads available to bind actin thin filaments by modulating the stability of its coiled coil. A stable myosin S2 coiled coil would have less active myosin S1 heads compared to a more flexible myosin S2 coiled coil, thus causing increased force production through acto-myosin interaction. The stability of the myosin S2 coiled coil was modulated by the binding of a natural myosin S2 binding protein, myosin binding protein C (MyBPC), and synthetic myosin S2 binding proteins, stabilizer and destabilizer peptide, to myosin S2. Competitive enzyme linked immunosorbent assay (cELISA) experiments revealed the cross specificity and high binding affinity of the synthetic peptides to the myosin S2 of human cardiac and rabbit skeletal origins. Gravitational force spectroscopy (GFS) was performed to test the stability of myosin S2 coiled coil in the presence of these myosin S2 binding proteins. GFS experiments demonstrated the stabilization of the myosin S2 coiled coil by the binding of MyBPC and stabilizer peptide to myosin S2, while the binding of destabilizer peptide to the same resulted in a flexible myosin S2 coiled coil. The binding of MyBPC and stabilizer peptide respectively, resulted in 3.35 and 1.5 times increase in force required to uncoil the myosin S2, while the binding of destabilizer peptide resulted in 1.6 times decrease in force required to uncoil the myosin S2. The myofibrillar contractility assay was performed to test the effect of synthetic myosin S2 binding proteins on the sarcomere shortening in myofibrils. The stabilizer peptide resulted in decreased sarcomere shortening of myofibrils as a result of decreased acto-myosin interaction, on the other hand, the binding of destabilizer peptide caused an increase in sarcomere shortening. The in vitro motility assay was performed to test the effect of altered stability of myosin S2 by binding of these myosin S2 binding proteins on the motility of actin filaments sliding over myosin. The motility of actin filaments was hindered by treating myosin thick filaments with whole length skeletal MyBPC or by treating heavy meromyosin with stabilizer peptide, while the motility of actin filaments was enhanced when heavy meromyosin was treated with destabilizer peptide. This study demonstrates that the myosin S2 coiled coil stability influences the force produced by acto-myosin interaction in striated skeletal muscle. The myosin S2 coiled coil when stabilized by MyBPC and stabilizer peptide resulted in decreased force production by reduced acto-myosin interaction. While the binding of destabilizer resulted in a flexible myosin S2 coiled coil and increased force production by enhanced acto-myosin interaction. The potentially cooperative response of contractility to the instability of the S2 coiled coil promises that this biological mechanism may be the target of drugs to modulate muscle performance.

Page generated in 0.0534 seconds