Spelling suggestions: "subject:"subgenera""
1 |
Degradación in vivo de un viroide de replicación nuclear: rutas catalizadas por proteínas Argonauta cargadas con pequeños RNAs viroidales y por otras ribonucleasas que generan RNAs subgenómicosMinoia, Sofia 31 March 2015 (has links)
Tesis por compendio / Los viroides, los agentes infecciosos más simples de la escala biológica, están constituidos por
una molécula circular de RNA monocatenario de aproximadamente 250-400 nucleótios (nt) que no
codifica proteína alguna. A pesar de esta simplicidad estructural, los viroides son capaces de
replicarse autónomamente, moverse sistémicamente y en muchos casos causar enfermedades en
sus plantas huéspedes. Las infecciones producidas por viroides representativos generan la
acumulación de pequeños RNAs viroidales (vd-sRNAs) de 21-24 nt con características similares a
los pequeños RNA interferentes (siRNAs), la huella dactilar del silenciamiento mediado por RNA.
La identificación de los vd-sRNAs implica que los viroides son diana de la primera barrera de
silenciamiento mediado por RNA, formada por las RNasas ‘Dicer-like’ (DCLs). Para examinar si
los vd-sRNAs se unen a las proteínas AGOs —el componente clave del complejo RISC (‘RNAinduced
silencing complex’) que constituye la segunda barrera del silenciamiento mediado por
RNA— hojas de Nicotiana benthamiana infectadas por el viroide del tubérculo fusiforme de la
patata (PSTVd) se agroinfiltraron con nueve de las diez proteínas AGOs de Arabidopsis thaliana.
Inmunoprecipitaciones a partir de los halos agroinfiltrados y análisis ‘Western-’ y ‘Northern-blot’
han mostrado que todas las AGOs se expresaron y, a excepción de AGO6, AGO7 y AGO10,
unieron vd-sRNAs: AGO1, AGO2 y AGO3 los de 21 y 22 nt, mientras que AGO4, AGO5 y AGO9
también mostraron afinidad por los de 24 nt. La secuenciación masiva mostró que las AGO1,
AGO2, AGO4 y AGO5 agroexpresadas unen los PSTVd-sRNAs en función de su tamaño y
nucleótido 5’-terminal, y que los perfiles de los correspondientes vd-sRNAs cargados en las AGOs
adoptan una distribución específica a lo largo del genoma viroidal. La agroexpresión de AGO1,
AGO2, AGO4 y AGO5 en hojas de N. benthamiana infectadas con PSTVd atenuó la acumulación
de los RNAs genómico viroidales, indicando que éstos, o sus precursores, también son diana de
RISC. En contraste con los ribovirus, la infección de PSTVd en N. benthamiana no afectó de forma
significativa la regulación mediada por miR168 de la AGO1 endógena, que carga vd-sRNAs con
especificidad similar a su homóloga de A. thaliana.
Mientras se conoce bien la biogénesis de los RNA viroidales, su degradación está restringida a
algunos datos que implican al silenciamiento mediado por RNA. En el curso de nuestros estudios
sobre el PSTVd, hemos observado consistentemente un patrón de 6-7 RNAs subgénomicos
(sgRNAs) de polaridad (+) que aparecen junto con los RNAs monoméricos circulares y lineares en
berenjena, un huésped experimental de este viroide. Hibridaciones ‘Northern-blot’ con sondas de
tamaño parcial y completo, mostraron que los sgRNAs (+) de PSTVd derivan de diferentes
regiones del RNA genómico y que algunos son parcialmente solapantes. Parte de los sgRNAs (+)
de PSTVd se observaron también en N. benthamiana y tomate, donde han pasado desapercibidos a
causa de su menor acumulación. El análisis por extensión de cebador de sgRNAs (+) de PSTVd
representativos excluye que sean productos de terminaciones prematuras de la transcripción, pues
carecen del extremo 5’ común que cabría esperar si ésta empezara en una posición específica.
Ulteriores análisis mediante 5’- y 3’-RACE indican que los sgRNAs (+) de PSTVd tienen extremos
5’-OH y 3’-P, que probablemente resultan de cortes endonucleolíticos de precursores más largos
catalizados por RNasas típicas que generan este tipo de extremos. Análisis de sgRNA (-) de
PSTVd, que también se acumulan en berenjena infectada, mostraron que presentan características
estructurales muy similares a los sgRNA (+). Nuestros resultados proporcionan una nueva visión
de cómo ocurre la degradación in vivo de los RNAs viroidales, posiblemente durante su replicación,
y sugieren que síntesis y degradación de las cadenas de PSTVd están conectadas, como se ha
observado en los mRNAs. / Minoia, S. (2015). Degradación in vivo de un viroide de replicación nuclear: rutas catalizadas por proteínas Argonauta cargadas con pequeños RNAs viroidales y por otras ribonucleasas que generan RNAs subgenómicos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48553 / Compendio
|
2 |
Understanding the Role of the Hypervariable Region in the Open Reading Frame 1 of the Hepatitis E virus in Viral ReplicationPudupakam, Raghavendra Sumanth Kumar 15 March 2011 (has links)
Hepatitis E virus (HEV) is a major cause of enterically transmitted acute viral hepatitis in developing countries that lack proper hygienic infrastructure. Hepatitis E is globally distributed and has emerged as an important public health disease in both developing and industrialized countries. HEV is a non-enveloped virus carrying a single-stranded positive-sense RNA genome of approximately 7.200 bp in length. The life cycle of HEV is poorly understood due to the lack of an efficient cell culture system. Animal model systems, including non-human primates, swine, and chickens are being used to study some fundamental aspects of the HEV biology. Recently, novel animal strains of rat and rabbit HEV have been discovered, and whose usage as animal model systems needs to be established. HEV infections in pigs and chickens provide excellent model systems to study the replication and pathogenesis aspects of HEV. Recently, we identified a hypervariable region (HVR) in the open reading frame 1 (ORF1) of HEV. The objectives of this dissertation were to utilize chicken and swine model systems to study the role of HVR in HEV infection in vivo, to determine the effects of HVR on replication of HEV in vitro, and to analyze the effect of exchange of HVR among different genotypes on the replication-competency and virion production in vitro.
Extensive sequence variability in the HVR among HEV strains of different genotypes prompted us to study the dispensability of this region. Initially we constructed two partial deletion mutants of genotype 1 human HEV, hHVRd1 and hHVRd2, with in-frame deletion of amino acids (aa) 711 to 777 and 747 to 761 in the HVR of a sub-genomic GFP HEV replicon. Expression of enhanced green fluorescent protein by the mutant hHVRd2 confirmed the dispensability of amino acid residues 747-761 of the HVR. To confirm our in vitro results, specific-pathogen-free (SPF) chickens were intra-hepatically inoculated with capped RNA transcripts from three avian HEV HVR-deletion mutants: mutants aHVRd1 (Δ557-585), aHVRd2 (Δ612-641), and aHVRd3 (Δ557-641). Chickens intra-hepatically inoculated with the mutants, aHVRd1 and aHVRd2, developed active viral infection as evidenced by seroconversion, viremia, and fecal virus shedding. Mutant aHVRd3, with a larger HVR deletion, was apparently attenuated in chickens. Additionally, we used the swine model system to further verify our results from the chicken study. The infectivity of four genotype 3 swine HEV HVR-deletion mutants, sHVRd1 (Δ712-790), sHVRd2 (Δ722-781), sHVRd3 (Δ735-765), and sHVRd4 (Δ712-765) constructed using the genotype 3 swine HEV as the backbone was determined in SPF pigs. Pigs intra-hepatically inoculated with capped RNA transcripts from the mutants sHVRd2, sHVRd3, and sHVRd4 developed active viral infection, whereas mutant sHVRd1 (Δ712-790), with a nearly complete HVR deletion, exhibited an attenuation phenotype. The data from these studies indicate that deletions in HVR do not abolish HEV infectivity in vitro or in vivo, although evidence for attenuation was observed for HEV mutants with a larger or nearly complete HVR deletion.
To further elucidate the role of HVR in HEV replication, we investigated the effects of serial amino acid deletions in HVR on the replication of HEV. We first constructed a genotype 1 human HEV luciferase replicon by replacing the ORF2 gene that encodes for the capsid protein with the fire fly luciferase reporter gene. Using the backbone of human HEV genotype 1 luciferase replicon, we constructed a series of HVR-deletion mutants with deletions of variable lengths in the HVR. Amino acid deletions Δ711-725, 711-740 and Δ711-750 were engineered at the N-terminus, deletions Δ729-754, Δ721-766, and Δ716-771 were engineered in the central region, and deletions Δ761-775, Δ746-775, and Δ736-775 were engineered at C-terminus of the HVR. The effects of these serial deletions on HEV RNA replication in the human liver carcinoma cell line, Huh7, were examined. Replication levels of mutants carrying these deletions were compared with that of the wild-type HEV in Huh7 cells. We observed that deletions in the HVR did not abolish viral RNA synthesis but substantially reduced the replication levels of viral RNA, as measured by the reporter luciferase activity. To further verify the effects of HVR deletions on viral RNA replication as observed with the genotype 1 human HEV replicon, we subsequently used a genetically-distinct strain of HEV, avian HEV, and constructed an avian HEV sub-genomic luciferase replicon by substituting the ORF2 gene of avian HEV with the fire fly luciferase gene. Avian HEV HVR-deletion mutants Δ557-603, Δ566-595, and Δ573-587 were then engineered using the backbone of avian HEV luciferase replicon. The replication efficiency of the three deletion mutants of avian HEV in chicken liver hepatoma cell line, LMH, was evaluated. Compared with the wild-type avian HEV, the viral RNA synthesis of the avian HEV HVR-deletion mutants was considerably reduced by the HVR deletions. To analyze the impact of the complete HVR deletion on avian HEV infectivity, we constructed an avian HEV mutant with a deletion of the entire HVR region (aaΔ557-603) using the avian HEV infectious cDNA clone as the backbone. After confirming the viability of the complete HVR-deletion mutant in LMH cells, SPF chickens were intrahepatically inoculated with capped RNA transcripts generated from the mutant. None of the chickens inoculated with the complete HVR-deletion mutant showed evidence of HEV infection, indicating that drastic reduction in replication levels due to complete HVR deletion has resulted in the loss of virus infectivity. The results indicated that HVR may have critical residues that may interact with viral/and or host factors and modulate the replication efficiency of HEV.
In the final part of the dissertation research, we sought to determine if the variable sequences of HVR are genotype-specific for in vitro virus replication. By using the genotype 1 human HEV as the backbone, we swapped the HVR of genotype 1 human HEV with the HVRs of the genotype 3 swine HEV and the distantly-related avian HEV to construct two inter-genotypic chimeras, pSKHEV2-Sw and pSKHEV2-Av. Similarly, by using the genotype 3 swine HEV as the backbone, the HVR of genotype 3 swine HEV was swapped with the HVR of genotype 1 human HEV to construct the chimera, pSHEV3-Hu. The viability of these chimeras was tested in Huh7 cells that are permissive for HEV replication. Immunofluorescence assay (IFA) with anti-HEV antibodies revealed that all the three chimeras were replication-competent in Huh7 cells. The infectivity of these chimeras was subsequently evaluated in HepG2 cells. The results showed that exchange of the HVR between different genotypes of mammalian HEVs does not abolish the replication competency and infectivity of HEV. This finding suggests that HVR is not genotype-specific with respect to viral replication and infectivity. The absence of detectable viral antigen in HepG2 cells infected with chimera pSKHEV2-Av suggested a functional incompatibility of the HVR of avian HEV in the mammalian HEV genome.
In summary, we identified a highly variable sequence, HVR, in the ORF1 of the HEV genome, and the sequences of the HVR vary significantly among HEV strains of different genotypes. We found that the HVR contain sequences that are dispensable for virus infectivity both in vitro and in vivo. Deletion analysis of HVR revealed that the region may play a role in modulating the replication efficiency of HEV RNA by interacting with viral and/or host factors. Finally, we demonstrated that HVR is not genotype-specific for virus replication and the region can be functionally replaced between mammalian HEV genotypes for virus replication and virion production in vitro. The results from this dissertation research have important implications for better understanding the biology and mechanism of HEV replication and may aid in our efforts to eventually develop a modified live-attenuated vaccine against HEV. / Ph. D.
|
3 |
Identification and characterisation of grapevine leafroll-associated virus 3 genomic and subgenomic RNAsMaree, Hans Jacob 12 1900 (has links)
Thesis (PhD (Genetics))--University of Stellenbosch, 2010. / Includes bibliography. / Title page: Dept. of Genetics, Faculty of Science / ENGLISH ABSTRACT: Grapevine leafroll-associated virus 3 (GLRaV-3) is the type strain for the genus
Ampelovirus, family Closteroviridae. There has been only one report that claimed the
complete nucleotide sequence of GLRaV-3 (isolate NY-1, AF037268). Here we report the
complete sequence of the South African GLRaV-3, isolate GP18 (EU259806) and show a
significantly extended 5’ end. We used RLM-RACE to determine the 5’ end of GP18 and
found the 5’ UTR to be 737 nt compared to 158 nt in the NY-1 sequence. This extended
UTR was found in all other South African isolates of GLRaV-3 that were tested. In two
collaborative studies the existence of the extended 5’ UTR was confirmed and further
investigated. In the first study (Coetzee et al., 2010), metagenomic data generated by next
generation sequencing (Illumina Genome Analyzer II) was analysed for GLRaV-3 specific
sequences. Sequences similar to the GP18 isolate confirmed the sequence of the extended
5’ UTR. In the second study (Jooste et al., 2010), three genetic variants were identified and
their respective 5’ UTRs studied. Great diversity was observed between the 5’ UTRs of the
different genetic variants, however within a variant the 5’ UTR was found to be highly
conserved. Grapevine leafroll-associated virus 3 is a positive sense, single stranded RNA
virus that has been shown, like other closteroviruses, to produce subgenomic (sg) RNAs
during replication. These sgRNAs are deployed for the expression of the ORFs on the 3’
half of the genome. In this study a dsRNA blot confirmed the presence of three, 3’ coterminal
sgRNAs species [sgRNA(ORF3/4), sgRNA(ORF5) and sgRNA(ORF6)] in
GLRaV-3-infected plant material when using a probe directed at the coat protein gene. The
specific 5’ terminal nucleotides for these sgRNAs as well as four additional sgRNAs
[sgRNA(ORF7), sgRNA(ORF8), sgRNA(ORF9) and sgRNA(ORF10-12)] were
determined by RLM-RACE for GLRaV-3 isolate GP18. The construction of a GLRaV-3
mini-replicon, analogous to RNA1 of Lettuce infectious yellows virus, for the evaluation
of putative sg-promoters is also described. / AFRIKAANSE OPSOMMING: Grapevine leafroll-associated virus 3 (GLRaV-3) is ‘n lid van die Closteroviridae familie
en die hooflid vir die genus Ampelovirus. Tot dusver was daar net een studie wat die
volledige nukleïensuurvolgorde van GLRaV-3 gerapporteer het (isolaat NY-1, AF037268).
In hierdie studie rapporteer ons die volledige volgorde van ‘n Suid-Afrikaanse GLRaV-3,
isolaat nl. GP18 (EU259806) wat noemenswaardig langer is aan die 5’ kant. RLM-RACE
is gebruik om die 5’ eindpunt van GP18 te bepaal en daar is gevind dat die 5’
ongetransleerde streek (UTR) 737 nt lank is in vergelyking met die 158 nt van die NY-1
volgorde. Die verlengde 5’ UTR is gevind in alle Suid-Afrikaanse monsters wat getoets is.
Die verlengde 5’ UTR is bevestig en verder bestudeer tydens twee samewerkingsprojekte.
In die eerste studie (Coetzee et al., 2010), is metagenomiese data gegenereer deur
volgende-generasie volgordebepaling (Illumina Genome Analyzer II) en geanaliseer vir
GLRaV-3 spesifieke volgordes. Volgordes soortgelyk aan die GP18 isolaat het die
verlengde 5’ UTR volgorde bevestig. In die tweede studie (Jooste et al., 2010), is drie
genetiese variante van GLRaV-3 geidentifiseer en hulle onderskeie 5’ UTR volgordes
bepaal en bestudeer. Daar is groot diversiteit tussen die 5’ UTRs van die verskillende
genetiese variante gevind, maar tussen isolate van dieselfde variant is die volgordes
gekonserveerd. Grapevine leafroll-associated virus 3 is ‘n positiewe-sin, enkelstring RNA
virus wat al voorheen bewys is om, soos ander closterovirusse, subgenomiese (sg) RNAs te
produseer tydens replisering. Hierdie sgRNAs word ingespan vir die uitdrukking van die
ORFs op die 3’ helfte van die virusgenoom. In hierdie studie is ‘n dsRNA klad gebruik om
die voorkoms van 3’ ko-terminale sgRNAs [sgRNA(ORF3/4), sgRNA(ORF5) and
sgRNA(ORF6)] te bevestig in GLRaV-3 geinfekteerde plantmateriaal deur gebruik te
maak van ‘n peiler teen die kapsiedproteïengeen. Die spesifieke 5’ terminale nukleotiedes
vir hierdie sgRNAs sowel as vier additionele sgRNAs [sgRNA(ORF7), sgRNA(ORF8),
sgRNA(ORF9) and sgRNA(ORF10-12)] is bepaal deur gebruik te maak van RLM-RACE
op die GLRaV-3 isolaat GP18. Die konstruksie van ‘n GLRaV-3 mini-repliserings
konstruk, analoog aan die RNA1 van Lettuce infectious yellows virus, vir die evaluasie
van moontlike sg-promotors word ook beskryf.
|
Page generated in 0.0601 seconds