• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sensitivity Analysis of Convex Relaxations for Nonsmooth Global Optimization

Yuan, Yingwei January 2020 (has links)
Nonsmoothness appears in various applications in chemical engineering, including multi-stream heat exchangers, nonsmooth flash calculation, process integration. In terms of numerical approaches, convex/concave relaxations of static and dynamic systems may also exhibit nonsmoothness. These relaxations are used in deterministic methods for global optimization. This thesis presents several new theoretical results for nonsmooth sensitivity analysis, with an emphasis on convex relaxations. Firstly, the "compass difference" and established ODE results by Pang and Stewart are used to describe a correct subgradient for a nonsmooth dynamic system with two parameters. This sensitivity information can be computed using standard ODE solvers. Next, this thesis also uses the compass difference to obtain a subgradient for the Tsoukalas-Mitsos convex relaxations of composite functions of two variables. Lastly, this thesis develops a new general subgradient result for Tsoukalas-Mitsos convex relaxations of composite functions. This result does not limit on the dimensions of input variables. It gives the whole subdifferential of Tsoukalas-Mitsos convex relaxations. Compare to Tsoukalas-Mitsos’ previous subdifferential results, it does not require additionally solving a dual optimization problem as well. The new subgradient results are extended to obtain directional derivatives for Tsoukalas-Mitsos convex relaxations. The new subgradient results and directional derivative results are computationally approachable: subgradients in this article can be calculated both by the vector forward AD mode and reverse AD mode. A proof-of-concept implementation in Matlab is discussed. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0626 seconds