Spelling suggestions: "subject:"subgrupo"" "subject:"subgrupos""
1 |
Subgrupos solitarios de grupos finitosLiriano Castro, Orieta del Corazón de Jesús 07 January 2016 (has links)
[EN] The scope of this thesis is the abstract finite group theory. All the groups we will consider will be finite. hence, the word "group" will be understood as a synonimous of "finite group". We say that a subgroup H of a group G is solitary when no other subgroup of G is isomorphic to H. A normal subgroup H of a group G is said to be normal solitary when no other normal subgroup of G is isomorphic to H. A normal subgroup N of a group G is said to be quotient solitary when no other normal subgroup K of G gives a quotient isomorphic to G/N. Solitary subgroups, normal solitary subgroups, and quotient solitary subgroups have been recently studied by authors like Thévenaz, who named the solitary subgroups as strongly characteristic subgroups, Kaplan and Levy, Tarnauceanu, and Atanasov and Foguel.
The aim of this PhD thesis project is to deepen into the analysis of these subgroup embedding properties, by refining the knowledge of their lattice properties, by obtaining general properties related to classes of groups, and by analysing groups in which the members of some distinguished families of subgroups satisfy these embedding properties.
The basic results of group theory that will be used in the memoir appear in Chapter 1. Among them, we comment on some results about soluble groups, supersoluble groups, nilpotent groups, classes of groups, and p-soluble and p-nilpotent groups for a prime p. In Chapter 2, we present the basic concepts about these embedding properties, as well as some basic results satisfied by them.
Chapter 3 is devoted to the study of lattice properties of these types of subgroups. In this chapter we deepen into the study of the lattices of solitary subgroups and quotient solitary subgroups developed by Kaplan and Levy and by Tarnauceanu and we check that, even though these lattices consist of normal subgroups, they are not sublattices of the lattice of normal subgroups. We also check that the set of all normal solitary subgroups does not constitute a lattice, which motivates the introduction of the concept of subnormal solitary subgroup as a more suitable tool to deal with lattice properties.
In Chapter 4, we study in depth the relations between these embedding properties and classes of groups. We observe that the subnormal solitary subgroups behave well with respect to radicals for Fitting classes and that the residuals for formations are quotient solitary subgroups. We also study conditions under which the radicals with respect to Fitting classes are quotient solitary subgroups and the residuals with respect to formations are solitary subgroups. To finish, we state the natural question of whether the solitary or subnormal solitary subgroups can be regarded as radicals for suitable Fitting classes or whether the quotient solitary subgroups are residuals for suitable Fitting classes. We give a negative answer to this question.
Chapter 5 is devoted to the study of groups whose minimal subgroups are solitary, that is, groups with a unique subgroup of order p for each prime p dividing its order. We give a complete classification of these groups and we make some remarks about related problems.
Our contributions to this research line have been accepted for their publication in two papers in Communications in Algebra and in Journal of Algebra and its Applications. / [ES] El ámbito de esta tesis es el de la teoría abstracta de grupos finitos. Todos los grupos que consideremos serán finitos. Por ello, la palabra «grupo» se entenderá como sinónima de «grupo finito». Decimos que un subgrupo H de un grupo G es solitario cuando ningún otro subgrupo de G es isomorfo a H. Un subgrupo normal H de un grupo G se dice normal solitario cuando ningún otro subgrupo normal de G es isomorfo a H. Un subgrupo normal N de un grupo G se dice que es solitario para cocientes cuando ningún otro subgrupo normal K de G da un cociente isomorfo a G/N. Los subgrupos solitarios, los subgrupos normales solitarios y los subgrupos solitarios para cocientes han sido recientemente estudiados por autores como Thévenaz, quien bautizó los subgrupos solitarios como subgrupos fuertemente característicos, Kaplan y Levy, Tarnauceanu y Atanasov y Foguel.
El objeto de este proyecto de tesis doctoral es el de profundizar en el análisis de estas propiedades de inmersión de subgrupos, afinando en el conocimiento de sus propiedades reticulares, obteniendo propiedades generales en relación con clases de grupos y analizando grupos en los que los miembros de algunas familias destacadas de subgrupos satisfacen estas propiedades de inmersión. Los resultados básicos de teoría de grupos que se utilizan en la memoria aparecen en el capítulo 1. Entre ellos, comentamos algunos resultados sobre grupos resolubles, superresolubles, nilpotentes, clases de grupos y grupos p-resolubles y p-nilpotentes para un primo p. En el capítulo 2 presentamos los conceptos básicos sobre estas propiedades de inmersión, así como algunos resultados básicos que satisfacen. El capítulo 3 está dedicado al estudio de propiedades reticulares de estos tipos de subgrupos. En este capítulo se profundiza en el estudio de los retículos de subgrupos solitarios y solitarios para cocientes llevado a cabo por Kaplan y Levy y por Tarnauceanu y se comprueba que, a pesar de que estos retículos constan de subgrupos normales, no son subretículos del retículo de subgrupos normales. También comprobamos que el conjunto de subgrupos normales solitarios no constituye un retículo, lo que motiva la introducción del concepto de subgrupo subnormal solitario como herramienta más adecuada para tratar propiedades reticulares.
En el capítulo 4 estudiamos con profundidad las relaciones entre estas propiedades de inmersión y clases de grupos. Observamos que los subgrupos subnormales solitarios se comportan bien respecto de radicales de clases de Fitting y que los residuales para formaciones son subgrupos solitarios para cocientes. Esto permite mejorar algunos resultados sobre subgrupos solitarios para cocientes. También estudiamos condiciones en que los radicales respecto de clases de Fitting son subgrupos solitarios para cocientes y los residuales respecto de formaciones son subgrupos solitarios. Por último, nos planteamos la cuestión natural de si los subgrupos solitarios o subnormales solitarios pueden verse como radicales para clases de Fitting adecuadas o si los subgrupos solitarios para cocientes son residuales para clases de Fitting adecuadas. Damos una respuesta negativa a esta cuestión.
El capítulo 5 está dedicado al estudio de grupos cuyos subgrupos minimales son solitarios, es decir, grupos con un único subgrupo de orden p para cada primo p divisor de su orden. Damos una clasificación completa de estos grupos y hacemos algunas observaciones sobre problemas relacionados.
Nuestras aportaciones a esta línea de investigación han sido aceptadas para su publicación en dos artículos en Communications in Algebra y en Journal of Algebra and its Applications. / [CA] L'àmbit d'aquesta tesi és el de la teoria abstracta de grups finits. Tots els grups que hi considerem seran finits. Per això, la paraula «grup» s'entendrà com a sinònima de «grup finit». Direm que un subgrup H d'un grup G és solitari quan cap altre subgrup de G no és isomorf a H. Un subgrup normal H d'un grup G es diu normal solitari quan cap altre subgrup normal de G no és isomorf a H. Un subgrup normal N d'un grup G es diu que és solitari per a quocients quan cap altre subgrup normal K de G no dóna un quocient isomorf a G/N. Els subgrups solitaris, els subgrups solitaris normals i els subgrups solitaris per a quocients han sigut recentment estudiats per autors com Thévenaz, qui batejà els subgrups solitaris com a subgrups fortament característics, Kaplan i Levy, Tarnauceanu i Atanasov i Foguel.
L'objecte d'aquest projecte de tesi doctoral és el d'aprofundir en l'anàlisi d'aquestes propietats d'immersió de subgrups, afinant en el coneixement de les seues propietats reticulars, obtenint propietats generals en relació amb classes de grups i analitzant grups en què els membres d'algunes famílies destacades de subgrups satisfan aquestes propietats d'immersió. Els resultats bàsics de teoria de grups que es fan servir en la memòria apareixen al capítol 1. Entre ells, comentem alguns resultats sobre grups resolubles, superresolubles, nilpotents, classes de grups i grups p-resolubles i p-nilpotents per a un primer p. Al capítol 2 presentem els conceptes bàsics sobre aquestes propietats d'immersió, així com alguns resultats bàsics que satisfan.
El capítol 3 està dedicat a l'estudi de propietats reticulars d'aquests tipus de subgrups. En aquest capítol s'aprofundeix en l'estudi dels reticles de subgrups solitaris i solitaris per a quocients dut a terme per Kaplan i Levy i per Tarnauceanu i es comprova que, encara que aquests subgrups consten de subgrups normals, no són subreticles del reticle de subgrups normals. També comprovem que el conjunt de subgrups normals solitaris no constitueix un reticle, la qual cosa motiva la introducció del concepte de subgrup subnormal solitari com a eina més adient per tractar propietats reticulars.
Al capítol 4 estudiem amb profunditat les relacions entre aquestes propietats d'immersió i classes de grups. Observem que els subgrups subnormals solitaris es comporten bé respecte de radicals de classes de Fitting i que els residuals per a formacions són subgrups solitaris per a quocients. Açò permet millorar alguns resultats sobre subgrups solitaris per a quocients. També estudien condicions en què els radicals respecte de classes de Fitting són subgrups solitaris per a quocients i els residuals respecte de formacions són subgrups solitaris. Per acabar, ens plantegem la qüestió natural de si els subgrups solitaris o subnormals solitaris poden veure's com a radicals per a classes de Fitting adients o si els subgrups solitaris per a quocients són residuals per a classes de Fitting adients. Donem una resposta negativa a aquesta qüestió.
El capítol 5 està dedicat a l'estudi de grups els subgrups minimals dels quals són solitaris, és a dir, grups amb un únic subgrup d'ordre p per a cada primer p divisor del seu ordre. Donem una classificació completa d'aquests grups i fem algunes observacions sobre problemes relacionats.
Les nostres aportacions a aquesta línia de recerca han sigut acceptades per a llur publicació a dos articles a Communications in Algebra i a Journal of Algebra and its Applications. / Liriano Castro, ODCDJ. (2015). Subgrupos solitarios de grupos finitos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59397
|
Page generated in 0.0375 seconds