• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 121
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 161
  • 101
  • 43
  • 41
  • 32
  • 26
  • 24
  • 24
  • 23
  • 20
  • 17
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Dynamics and Control of Autonomous Underwater Vehicles with Internal Actuators

Unknown Date (has links)
This dissertation concerns the dynamics and control of an autonomous underwater vehicle (AUV) which uses internal actuators to stabilize its horizontalplane motion. The demand for high-performance AUVs are growing in the field of ocean engineering due to increasing activities in ocean exploration and research. New generations of AUVs are expected to operate in harsh and complex ocean environments. We propose a hybrid design of an underwater vehicle which uses internal actuators instead of control surfaces to steer. When operating at low speeds or in relatively strong ocean currents, the performances of control surfaces will degrade. Internal actuators work independent of the relative ows, thus improving the maneuvering performance of the vehicle. We develop the mathematical model which describes the motion of an underwater vehicle in ocean currents from first principles. The equations of motion of a body-fluid dynamical system in an ideal fluid are derived using both Newton-Euler and Lagrangian formulations. The viscous effects of a real fluid are considered separately. We use a REMUS 100 AUV as the research model, and conduct CFD simulations to compute the viscous hydrodynamic coe cients with ANSYS Fluent. The simulation results show that the horizontal-plane motion of the vehicle is inherently unstable. The yaw moment exerted by the relative flow is destabilizing. The open-loop stabilities of the horizontal-plane motion of the vehicle in both ideal and real fluid are analyzed. In particular, the effects of a roll torque and a moving mass on the horizontal-plane motion are studied. The results illustrate that both the position and number of equilibrium points of the dynamical system are prone to the magnitude of the roll torque and the lateral position of the moving mass. We propose the design of using an internal moving mass to stabilize the horizontal-plane motion of the REMUS 100 AUV. A linear quadratic regulator (LQR) is designed to take advantage of both the linear momentum and lateral position of the internal moving mass to stabilize the heading angle of the vehicle. Alternatively, we introduce a tunnel thruster to the design, and use backstepping and Lyapunov redesign techniques to derive a nonlinear feedback control law to achieve autopilot. The coupling e ects between the closed-loop horizontal-plane and vertical-plane motions are also analyzed. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
122

Hydrodynamic analysis of underwater bodies for efficient station keeping in shallow waters with surface waves

Unknown Date (has links)
To determine the effect of body shape on the response of underwater vehicles to surface waves in shallow water, the wave radiation hydrodynamic forces are evaluated for a family of (i) prolate spheroidal hull forms and (ii) cylindrical bodies with hemispherical nose and conical tail sections by systematically varying the geometric parameters but keeping displacement constant. The added-mass and wave damping coefficients are determined using a frequency-domain, simple-source based boundary integral method. Results are obtained for a range of wave frequencies and depths of vehicle submergence all for a fixed water depth of 10 m. With the wave exciting force and moment determined using the Froude-Krylov theory, the response transfer functions for heave and pitch are then determined. The heave and pitch response spectra in actual littoral seas are then determined with the sea state modeled using TMA spectral relations. Results show that vehicle slenderness is a key factor affecting the hydrodynamic coefficients and response. The results show two characteristics that increase the radiation hydrodynamic forces corresponding to heave and pitch motions: namely, vehicle length and further-away from mid-vehicle location of the body shoulder. The opposite is true for the oscillatory surge motion. By utilizing these observed characteristics, one can design the lines for maximum radiation forces and consequently minimum hull response for the critical modes of rigid-body motion in given waters and vehicle missions. In the studies carried out in the thesis, a hull with a long parallel middle body with hemispherical nose and conical tail sections has better heave and pitch response characteristics compared prolate spheroid geometry of same volume. The methodology developed herein, which is computationally efficient, can be used to determine optimal hull geometry for minimal passive vehicle response in a given sea. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
123

Leveled flight control of an unmanned underwater vehicle operating in a wave induced environment

Unknown Date (has links)
Autonomous Underwater Vehicle (AUV) depth control methods typically use a pressure sensor to measure the depth, which results in the AUV following the trajectory of the surface waves. Through simulations, a controller is designed for the Ocean Explorer AUV with the objective of the AUV holding a constant depth below the still water line while operating in waves. This objective is accomplished by modeling sensors and using filtering techniques to provide the AUV with the depth below the still water line. A wave prediction model is simulated to provide the controller with knowledge of the wave disturbance before it is encountered. The controller allows for depth keeping below the still water line with a standard deviation of 0.04 and 0.65 meters for wave amplitudes of 0.1-0.25 and 0.5-2 meters respectively and wave frequencies of 0.35-1.0 𝑟𝑎𝑑⁄𝑠𝑒𝑐, and the wave prediction improves the depth control on the order of 0.03 meters. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
124

Simulating the dynamic interaction of an AUV and towed magnetometer

Unknown Date (has links)
A magnetometer with a sensitivity of 0.01nT will be towed through the thermocline by a 2.87 meter long, 0.533 meter diameter autonomous underwater vehicle (AUV) to measure the magnetic fluctuations generated by oceanic internal waves. At this point, no research has been found that suggests towed magnetometer measurements have been done using an AUV. Simulations of the AUV, tow cable, and towfish are performed to provide an understanding of the effects of changing different input parameters, such as towing speed (0.5-2m/s), cable length (5-15m), vehicle trajectory (circle and vertical zig zag maneuvers), and current (0.25-1.25m/s). The AUV-cabletowfish system and equations of motion needed for the simulations are described herein. Results show that a 5m tow cable provides better towfish maneuvering than the longer cable lengths. High towfish pitch angle is decreased by decreasing the distance between CG and CB. Surface currents speed of 0.25m/s change the AUV and towfish circle maneuver to a spiral trajectory, while 1.25m/s current speed cause a zig zag trajectory. / by Lea Gabrielle Miller. / Thesis (M.S.C.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
125

Operator-adjustable frame rate, resolution, and gray scale tradeoff in fixed-bandwidth remote manipulator control

Deghuee, Bradley James January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1980. / MICHROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Bradley James Deghuee. / M.S.
126

Electronics systems development and integration for a second generation robot submarine

Carnevale, Joseph Anthony January 1980 (has links)
Thesis (Ocean E)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Joseph Anthony Carnevale, Jr. / Ocean E
127

A fuzzy logic material selection methodology for renewable ocean energy applications

Unknown Date (has links)
The purpose of this thesis is to develop a renewable ocean energy material selection methodology for use in FAU's Ocean Energy Projects. A detailed and comprehensive literature review has been performed concerning all relevant material publications and forms the basis of the developed method. A database of candidate alloys has been organized and is used to perform case study material selections to validate the developed fuzzy logic approach. The ultimate goal of this thesis is to aid in the selection of materials that will ensure the successful performance of renewable ocean energy projects so that clean and renewable energy becomes a reality for all. / by Donald Anthony Welling. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
128

Video resolution, frame rate and grayscale tradeoffs under limited bandwidth for undersea teleoperation

Ranadivé, Vivek January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Vivék Ranadivé. / M.S.
129

Metodologia numérica para estimativa da manobrabilidade de veículos autônomos submarinos. / Numerical methodology for estimating the maneuverability of underwater autonomous vehicles.

Dantas, João Lucas Dozzi 26 May 2014 (has links)
O uso de modelos de manobras representa um auxilio importante no projeto de veículos marinhos, permitindo a verificação do desempenho destes veículos, desenvolver o sistema de piloto automático, dentre outras aplicações durante a fase de projeto. Na área de veículos submarinos, seus modelos são tradicionalmente baseados em equações de movimento que incluem expressões polinomiais para representar os esforços hidrodinâmicos. Estes modelos são derivados de uma expansão em série de Taylor de forças e momentos, sendo representados em função das variáveis de movimento. Entretanto, estes modelos limitam a representatividade dos esforços hidrodinâmicos, e, especialmente para os termos de segunda ou mais altas ordens, eles requerem ensaios custosos em tanque de provas para identificar corretamente cada um dos coeficientes polinomiais. Esta dependência em ensaios de tanque de provas tem um impacto critico, ou até mesmo não realístico, durante o desenvolvimento de veículos autônomos submarinos, AUVs, de baixo ou médio custo. Utilizando métodos atuais da fluidodinâmica computacional (CFD), este trabalho propõe um roteiro alternativo para definir os modelos de manobras não lineares para uma classe de AUVs. As simulações de CFD, verificados e validados por normas rigorosas, são utilizados como base para derivar as funções não lineares que representam os esforços hidrodinâmicos, devido variações na velocidade lateral, velocidade angular e deflexão dos lemes. A abordagem numérica é complementada pelo uso de modelos analíticos e semi-empíricos oriundos da indústria de mísseis, que tiveram que ser melhorados com informações retiradas das simulações de CFD. Ajustes adicionais e derivações nos intervalos de confiança para as estimativas produzidas por métodos numéricos também são fornecidos pelo uso de modelos analíticos e semi-empíricos. Adotando o AUV Pirajuba como caso de estudo, a validação dos modelos de manobra foi realizada em duas etapas. Primeiro, são comparadas as estimativas dos esforços hidrodinâmicos com as medições em tanque de provas de um modelo cativo, e em seguida a resposta dinâmica dos modelos de manobras são comparadas com aquelas obtidas por ensaios em mar, sempre utilizando critérios de verificação e validação. Este tipo de análise indicou uma validação dos esforços hidrodinâmicos e do movimento para grande parte dos ensaios, sendo que nos demais casos o AUV teve seu comportamento dinâmico bem reproduzido. Este resultado demonstra que a metodologia proposta pode ser utilizada para estimar o modelo de manobra de um AUV típico, gerando uma solução de menor custo para a fase de desenvolvimento destes veículos. / The use of maneuvering models represents an important assistance in the project of marine vessels, allowing for the evaluation of the vehicle performance, the autopilot system development, among other tasks during the design phase. In the field of underwater vehicles, those models commonly are based on equations of motion that include polynomial expressions for representing the hydrodynamic efforts. They are derived from Taylor series expansion of forces and moments represented as functions of the motion variables. However, those models limit the representativeness of the hydrodynamic efforts, and, especially for the second order or higher terms, they require expensive trials in towing tank facilities to correctly identify each polynomic coefficient. This dependence on intensive tank tests has a critical impact, or is even unrealistic during the development of middle or low cost autonomous underwater vehicles, AUVs. Using current methods of computational fluid dynamics (CFD), this work proposes an alternative roadmap to construct nonlinear manoeuvring models, which can be applied to a class of AUVs. CFD simulations, verified and validated by rigorous standards, are used as basis to derive nonlinear functions that represent the hydrodynamic efforts due to variations in lateral velocity, angular rate and rudder deflection. The numerical approach is complemented by the use of analytical and semi-empirical models derived from missile industry, which have been improved according to the information taken from the CFD simulations. Further adjustments and derivation of confidence intervals to the estimates produced by the numerical method are also provided by the use of analytical and semi-empirical models. Adopting the Pirajuba AUV as a test bed, the manoeuvring model validation was carried out in two stages. Firstly, estimates of hydrodynamic efforts are compared with measurements obtained from experiments using a captive model in a towing tank. In the second step, the dynamic response predicted by the maneuvering model was compared with the output measured during free model trials. This type of analysis validated the hydrodynamic efforts and motion in most of the experiments, whereas for the remaining cases the AUV had its dynamic behavior well reproduced. This result demonstrates that the proposed methodology can be used to estimate the maneuvering model of a typical type AUV, generating a lower cost solution for the development phase of the vehicle.
130

Dynamics modeling and control of variable length remotely operated vehicle tether

Prabhakar, Sairam 01 December 2009 (has links)
In this work, a computational model is developed to simulate the dynamics of variable length tether in a tethered underwater vehicle system. The system is comprised of a surface ship and winch, a slender armored cable that links the surface ship and the remotely operated vehicle (ROV), and the ROV itself. The cable is considered to be variable length to facilitate paying out and reeling in maneuvers. The motion equation for variable length tether is obtained from Newton's second law of motion for variable mass systems. Unlike many existing formulations. the model can treat the rapid deployment and retrieval of tether accurately. The Weighted Residual Finite Element technique is applied to the continuous motion equation to obtain a system of spatially discrete nonlinear second order differential equations. Time domain simulation of variable length maneuvers is used to validate the performance of the model for low and high tension cable states The model is applied to the development of a dynamic positioning system for a submerged point on the tether, called the control node. for the Remotely Operated Platform for Ocean Sciences (ROPOS) operated by the Canadian Scientific Submersible Facility (CSSF). A decoupled controller incorporating a Dahlin Controller for positioning in the longitudinal plane and a PD Controller for depth regulation produces ship motion and winch activity to position the control node. It is shown that the use of the control system to regulate the position of the control node brings about significant reduction in the disturbance force exerted by the tether on the ROV during a station-keeping maneuver.

Page generated in 0.0842 seconds