• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Submesoscale dynamics in the Bay of Biscay continental shelf / La dynamique à sousmésoéchelle sur le plateau continental du Golfe de Gascogne

Yelekçi, Özge 23 October 2017 (has links)
Ce travail de thèse explore la dynamique à sousmésoéchelle sur le plateau continental du golfe de Gascogne. Dans la première partie, les caractéristiques des processus à sousmésoéchelle sur le plateau sont identifiées à l’aide de données satellites à haute résolution de température de surface de la mer issues du capteur MODIS. Une détection des fronts est réalisées à l’aide d’exposants de singularité, une approche récente pour identifier les irrégularités dans les champs de SST. Les résultats sont complétés par des simulations numériques à 2.5 km de résolution spatiale. Trois types principaux de fronts sont présentés : i) les fronts de marée le long de la côte et plus marqués dans la région d’Ouessant; ii) les fronts au niveau du talus continental liés à l’activité des ondes internes; iii) les fronts d’eaux dessalées aux limites des panaches de rivières en hiver. Dans la seconde partie, un modèle hydrodynamique réaliste du golfe de Gascogne a été mis en place. Cette configuration a une résolution spatiale de 1 km et 40 niveaux verticaux sigma. Un diagnostic est basé sur l’hypothèse que les processus à sousmésoéchelles résultent d’instabilités baroclines. L’énergie potentielle disponible est ainsi convertie en énergie cinétique tourbillonnaire avec des échelles temporelles O(1) jour ou moins grâce à ces processus. L’activité est plus intense dans la région d’Ouessant et les régions côtières en été. En hiver, ces processus ont une échelle temporelle O(1) jour (∼ 30 heures). Ces échelles temporelles sont un indicateur de la présence d’instabilités baroclines à sousmésoéchelle à proximité du panache. / This thesis explores the submesoscale dynamics in the Bay of Biscay continental shelf. In the first part, submesoscale features over the shelf are identified using remotely sensed high resolution sea surface temperature (SST) images by MODIS. Front detection is achieved through singularity exponents, a novel method of calculating irregularities on the SST fields, and an index for the frontal activity is generated. Results are complemented with 2.5 km horizontal resolution numerical simulations. Three main types of fronts are presented: i) tidal mixing fronts along the coast and most significantly in the Ushant region; ii) shelf break front related to internal tidal wave activity; iii) fresh water fronts along the edge of the river plumes in winter. In the second part, a realistic hydrodynamical model of Bay of Biscay is set up. The model has a 1 km horizontal resolution and 40 σ vertical layers. Diagnostics is based on the assumption that the submesoscale features in the upper ocean are the result of baroclinic instabilities. Available potential energy (APE) is then converted to eddy kinetic energy (EKE) in time scales in O(1) day or less through this process. Activity increases in the Ushant region and the coastal regions in summer, whereas, in winter, activity in the vicinity of the fresh water plumes dominates. In summer, EKE conversion time scale in this region is ∼ 5 days, which can be considered shorter than mesoscale. In winter, they have a time scale of O(1) (∼ 30 hours). This is an indicator that the submesoscale baroclinic instability is happening at the plume.
2

Western Boundary Dynamics in the Arabian Sea / Dynamique de bord ouest en mer d'Arabie

Vic, Clément 12 November 2015 (has links)
Le but de cette thèse est d'analyser plusieurs phénomènes de bord ouest de la Mer d'Arabie : (i) le cycle de vie d'un tourbillon de mésoéchelle persistant, le Great Whirl; (ii) la dynamique d'un écoulement d'eau dense (outflow) formée dans une mer adjacente, l'outflow du Golfe Persique; et (iii) une remontée d'eau profonde (upwelling) saisonnière dans la zone côtière d'Oman. Le point commun entre ces phénomènes est leur localisation sur un bord ouest océanique. Ils sont donc influencés par des forçages locaux (notamment les vents de mousson) et les forçages à distance (ondes de Rossby et tourbillons dérivant vers l'ouest). En particulier, ces derniers vont jouer un rôle particulier car la Mer d'Arabie est située à basses latitudes, ce qui implique une propagation rapide des ondes longues et tourbillons. De plus, des ondes sont continuellement excitées par le régime saisonnier des moussons. Nous avons mis au point des expériences numériques de différentes complexités en utilisant un modèle aux équations primitives. Ces expériences permettent soit de simuler de manière réaliste la dynamique complexe de la Mer d'Arabie, soit d'isoler un processus en particulier. Les résultats principaux peuvent se résumer comme suit : (i) le cycle de vie du Great Whirl est significativement impacté par les ondes de Rossby annuelles. Le rotationnel de la tension de vent joue un rôle important dans le maintien, le renforcement et la barotropisation du tourbillon. (ii) La dispersion de l'Eau du Golfe Persique (Persian Gulf Water, PGW) est déterminée par le mélange induit par les tourbillons de mésoéchelle. Précisément, ces tourbillons entrent dans le Golfe d'Oman (où se déverse la PGW), et interagissent avec la topographie. Ces interactions frictionnelles produisent des bandes de vorticité très intenses dans la couche limite de fond. Celles-ci sont arrachées et forment des tourbillons de sous-mésoéchelle. Ces tourbillons capturent de la PGW initialement située sur la pente continentale et la redistribuent dans le golfe d'Oman. Ce mécanisme donne finalement lieu à du mélange, permettant d'expliquer le gradient de salinité climatologique observé en profondeur. (iii) La dynamique de l'upwelling saisonnier au large d'Oman contraste fortement avec la dynamique des upwelling de bord est (Eastern Boundary Upwelling Systems, EBUS). En effet, les ondes de Rossby se propagent vers le large dans les EBUS et vers la côte dans l'upwelling de bord ouest d'Oman. Ces ondes modulent la réponse en température de l'upwelling forcé par le vent.Dans l'ensemble, ces résultats sont relativement spécifiques à la Mer d'Arabie. La faible extension zonale et la basse latitude de la Mer d'Arabie, ainsi que le régime de mousson des vents saisonniers en font une région particulière. La propagation rapide des ondes et tourbillons et leurs interactions avec le bord ouest façonnent les régimes de turbulence de la Mer d'Arabie. / This PhD aims to investigate some western boundary processes in the Arabian Sea : (i) the life cycle of the socalled Great Whirl, a persistent mesoscale eddy; (ii) the dynamics of the Persian Gulf outflow, a marginal sea dense outflow; and (iii) the seasonal Oman upwelling, a coastal upwelling forced by summermonsoonal winds. The cornerstone of all these phenomena is their locationat a western boundary, which makes then being influenced by both localforcing (e.g., monsoonal winds) and remote forcing (Rossby waves and wesward drifting eddies). Specifically, the later are expected to impact the western boundary dynamics since the low latitude of the Arabian Sea implies a fast westward propagation of long Rossby waves and eddies. Moreover, waves are continously excited by the reversing monsoonal winds. Based on a primitive equation model, we designed numerical experiments of different complexity that allowed to either realistically simulate the dynamics in the Arabian Sea or to isolate some processes.Major findings can be summarized as follows : (i) The Great Whirl life cycle is found to be significantly paced by annual Rossby waves, although the strong monsoonal wind stress curl is of major importance to sustain the structure. (ii) The Persian Gulf Water (PGW) spreading in the Gulf of Oman and the northern Arabian Sea can be explained by the stirring done by eddies entering the Gulf. These remotely formed surface intensifed mesoscale eddies propagate into the Gulf and interact with the topography. Frictional interactions produce intense vorticity strips at the boundary that detach and roll up in the interior, forming submesoscale coherent vortices (SCV). These SCV trap PGW initially located on the slope and redistribute it in the interior. This mechanism of transport ultimately produces mixing that explains the large-scale gradient of salinity in the gulf. (iii) We find that the dynamics of the seasonal upwelling of Oman contrasts with the more deeply studied Eastern Boundary Upwelling Systems (EBUS). In particular, Rossby waves, propagating offshore in EBUS vs. onshore in this western boudary upwelling, are found to modulate the wind driven upwelling and its sea surface temperature response.Overall, these results appear to be rather specific to the Arabian Sea. The short zonal extent and the low-latitude of the Arabian Sea, as well as the seasonally reversing wind forcing are the distinguishing features of this region. Fast waves and drifting eddies and their interactions with the western boundary significantly shape the turbulent regimes of the western Arabian Sea.

Page generated in 0.0625 seconds