• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 13
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

APPLICATION OF PROCESS SYSTEMS ENGINEERING TOOLS AND METHODS TO FERMENTATION-BASED BIOREFINERIES

Darkwah, Kwabena 01 January 2018 (has links)
Biofuels produced from lignocellulosic biomass via the fermentation platform are sustainable energy alternatives to fossil fuels. Process Systems Engineering (PSE) uses computer-based tools and methods to design, simulate and optimize processes. Application of PSE tools to the design of economic biorefinery processes requires the development of simulation approaches that can be integrated with existing, mature PSE tools used to optimize traditional refineries, such as Aspen Plus. Current unit operation models lack the ability to describe unsteady state fermentation processes, link unsteady state fermentation with in situ separations, and optimize these processes for competing factors (e.g., yield and productivity). This work applies a novel architecture of commercial PSE tools, Aspen Plus and MATLAB, to develop techniques to simulate time-dependent fermentation without and with in situ separations for process design, analyses and optimization of the operating conditions. Traditional batch fermentation simulations with in situ separations decouple these interdependent steps in a separate “steady state” reactor followed by an equilibrium separation of the final fermentation broth. A typical mechanistic system of ordinary differential equations (ODEs) describing a batch fermentation does not fit the standard built-in power law reaction kinetics model in Aspen Plus. To circumvent this challenge, a novel platform that links the batch reactor to a FORTRAN user kinetics subroutine (incorporates the ODEs) combined with component substitution (to simulate non-databank components) is utilized to simulate an unsteady state batch and in situ gas stripping process. The resulting model system predicts the product profile to be sensitive to the gas flow rate unlike previous “steady state” simulations. This demonstrates the importance of linking a time-dependent fermentation model to the fermentation environment for the design and analyses of fermentation processes. A novel platform linking the genetic algorithm multi-objective and single-objective optimizations in MATLAB to the unsteady state batch fermentation simulation in Aspen Plus through a component object module communication platform is utilized to optimize the operating conditions of a typical batch fermentation process. Two major contributions are: prior concentration of sugars from a typical lignocellulosic hydrolysate may be needed and with a higher initial sugar concentration, the fermentation process must be integrated with an in situ separation process to optimize the performance of fermentation processes. With this framework, fermentation experimentalists can use the full suite of PSE tools and methods to integrate biorefineries and refineries and as a decision-support tool to guide the design, analyses and optimization of fermentation-based biorefineries.
12

Simulation of ultrasonic time of flight in bolted joints / Simulering av ultraljudsförlopp i skruvförband

Chlebek, David January 2021 (has links)
Ultrasonic measurements of the preload in bolted joints is a very accurate method since it does not depend on the friction and other factors which cause difficulties for common methods. The ultrasonic method works by emitting an ultrasonic pulse into the bolt which is reflected at the end and returned to the transducer, the change in the time of flight (TOF) can be related to the elongation of the bolt and therefore the preload. One must account for the acoustoelastic effect which is the change in sound speed due to an initial stress state. The goal of this thesis project was to implement a Murnaghan hyperelastic material model in order to account for the acoustoelastic effect when conducting a numerical simulation using the finite element method (FEM). An experiment was also performed to validate the numerical simulation. The DeltaTOF as a function of a tensile force was obtained for an M8 and M10 test piece from the experiment. The material model was implemented by creating a user subroutine written in Fortran for the explicit solver Radioss. Hypermesh was used to set-up the numerical simulation. The material model has shown an expected behavior with an increased sound speed with compressive stresses and a decreased speed with tensile stresses. The numerical simulation showed a good correspondence to the experimental results. / Ultraljudsmätning av klämklraften i skruvförband är en väldigt noggrann metod eftersom att metoden inte påverkas av friktion eller andra faktorer som innebär svårigheter för vanliga metoder. Ultraljudsmetoden fungerar genom att skicka in en ultraljudsvåg i skruven som reflekteras i botten och återvänder tillbaka till sensorn. Skillnaden i tiden för ekot att återvända kan relateras till förlängningen av skruven och därmed klämkraften. Det är viktigt att ta hänsyn till den akustoelastiska effekten, som är fenomenet där ljudhastigheten av en våg i en solid förändras med spänningstillståndet. Målet med det här arbetet är att implementera en hyperelastisk Murnaghan modell som tar hänsyn till den akustoelastiska effekten med FEM simuleringar. Ett experiment har också genomförts för att validera beräkningsmodellen. Tidsfördröjningen som en funktion av förspänningskraften togs fram för ett M8 och M10 provobjekt. Murnaghans hyperelastiska materialmodell implementerades genom att skapa ett användar material skriven i programmeringsspråket Fortran för den explicita lösaren Radioss. Hypermesh användes för att ställa upp FEM simuleringen. Materialmodellen har visat ett väntat beteende med en ökad ljudhastighet med tryckspänningar och minskad ljudhastighet med dragspänningar. Beräkningsmodellen visade en god överenstämmelse med resultatet från experimentet.
13

Experimental and numerical studies of masonry wall panels and timber frames of low-rise structures under seismic loadings in Indonesia

Susila, Gede Adi January 2014 (has links)
Indonesia is a developing country that suffers from earthquakes and windstorms and where at least 60% of houses are non-engineered structures, built by unskilled workers using masonry and timber. The non-engineered housing units developed in urban region are also vulnerable to seismic hazard due to the use of low quality of material and constructions method. Those structures are not resistant to extreme lateral loads or ground movement and their failure during an earthquake or storm can lead to significant loss of life. This thesis is concerned with the structural performance of Indonesian low-rise buildings made of masonry and timber under lateral seismic load. The research presented includes a survey of forms of building structure and experimental, analytical and numerical work to predict the behaviour of masonry wall and traditional timber frame buildings. Experimental testing of both masonry and timber have been carried out in Indonesia to establish the quality of materials and to provide material properties for numerical simulations. The experimental study found that the strength of Indonesia-Bali clay brick masonry are below the minimum standard required for masonry structures built in seismic regions, being at least 50% lower than the requirement specified in British Standard and Eurocode-6 (BS EN 1996-1-1:2005). In contrast, Indonesian timber materials meet the strength classes specified in British Standard/Eurocode- 5 (BS EN 338:2009) in the range of strength grade D35-40 and C35).Structural tests under monotonic and cyclic loading have been conducted on building components in Indonesia, to determine the load-displacement capacity of local hand-made masonry wall panels and timber frames in order to: (1) evaluate the performance of masonry and timber frame structure, (2) investigate the dynamic behaviour of both structures, (3) observe the effect of in-plane stiffness and ductility level, and (4) examine the anchoring joint at the base of timber frame that resists the overturning moment. From these tests, the structural ductility was found to be less than two which is below the requirement of the relevant guidelines from the Federal Emergency Management Agency, USA (FEMA-306). It was also observed that the lateral stiffness of masonry wall is much higher than the equivalent timber frame of the same height and length. The experimental value of stiffness of the masonry wall panel was found to be one-twelfth of the recommended values given in FEMA-356 and the Canadian Building code. The masonry wall provides relatively low displacement compared to the large displacement of the timber frame at the full capacity level of lateral load, with structural framing members of the latter remaining intact. The weak point of the timber frame is the mechanical joint and the capacity of slip joint governs the lateral load capacity of the whole frame. Detailed numerical models of the experimental specimens were setup in Abaqus using three-dimensional solid elements. Cohesive elements were used to simulate the mortar behaviour, exhibiting cracking and the associated physical separation of the elements. Appropriate contact definitions were used where relevant, especially for the timber frame joints. A range of available material plasticity models were reviewed: Drucker-Prager, Crystalline Plasticity, and Cohesive Damage model. It was found that the combination of Crystalline Plasticity model for the brick unit and timber, and the Cohesive Damage model for the mortar is capable of simulating the experimental load-displacement behaviour fairly accurately. The validated numerical models have been used to (1) predict the lateral load capacity, (2) determine the cracking load and patterns, (3) carry out a detailed parametric study by changing the geometric and material properties different to the experimental specimens. The numerical models were used to assess different strengthening measures such as using bamboo as reinforcement in the masonry walls for a complete single storey, and a two-storey houses including openings for doors and windows. The traditional footing of the timber structures was analysed using Abaqus and was found to be an excellent base isolation system which partly explains the survival of those structures in the past earthquakes. The experimental and numerical results have finally been used to develop a design guideline for new construction as well as recommendations for retrofitting of existing structures for improved performance under seismic lateral load.

Page generated in 0.0448 seconds