• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kinetic and Crystallographic Studies of Drug-Resistant Mutants of HIV-1 Protease: Insights into the Drug Resistance Mechanisms

Liu, Fengling 02 May 2007 (has links)
HIV-1 protease (PR) inhibitors (PIs) are important anti-HIV drugs for the treatment of AIDS and have shown great success in reducing mortality and prolonging the life of HIV-infected individuals. However, the rapid development of drug resistance is one of the major factors causing the reduced effectiveness of PIs. Consequently, various drug resistant mutants of HIV-1 PR have been extensively studied to gain insight into the mechanisms of drug resistance. In this study, the crystal structures, dimer stabilities, and kinetics data have been analyzed for wild type PR and over 10 resistant mutants including PRL24I, PRI32V, PRM46L, PRG48V, PRI50V, PRF53L, PRI54V, PRI54M, PRG73S and PRL90M. These mutations lie in varied structural regions of PR: adjacent to the active site, in the inhibitor binding site, the flap or at protein surface. The enzymatic activity and inhibition were altered in mutant PR to various degrees. Crystal structures of the mutants complexed with a substrate analog inhibitor or drugs indinavir, saquinavir and darunavir were determined at resolutions of 0.84 – 1.50 Å. Each mutant revealed distinct structural changes, which are usually located at the mutated residue, the flap and inhibitor binding sites. Moreover, darunavir was shown to bind to PR at a new site on the flap surface in PRI32V and PRM46L. The existence of this additional inhibitor binding site may explain the high effectiveness of darunavir on drug resistant mutants. Moreover, the unliganded structure PRF53L had a wider separation at the tips of the flaps than in unliganded wild type PR. The absence of flap interactions in PRF53L suggests a novel mechanism for drug resistance. Therefore, this study enhanced our understanding of the role of individual residues in the development of drug resistance and the structural basis of drug resistance mechanisms. Atomic resolution crystal structures are valuable for the design of more potent protease inhibitors to overcome the drug resistance problem.
2

Crystallographic Analysis and Kinetic Studies of HIV-1 Protease and Drug-Resistant Mutants

Tie, Yunfeng 12 June 2006 (has links)
HIV-1 protease is the most effective target for drugs to treat AIDS, however, the long-term therapeutic efficiency is restricted by the rapid development of drug resistant variants. To better understand the molecular basis of drug resistance, crystallographic and kinetic studies were applied to wild-type HIV-1 protease (PR) and drug-resistant mutants, PRV82A, and PRI84V, in complex with substrate analogues, the current drug saquinavir and the new inhibitor UIC-94017 (TMC-114). UIC-94017 was also studied with mutants PRD30N and PRI50V. The drug-resistant mutations V82A, I84V, D30N and I50V participate in substrate binding. Eighteen crystal structures were refined at resolutions of 0.97-1.60A. The high accuracy of the atomic resolution crystal structures helps understand the reaction mechanism of HIV-1 PR. Different binding modes are observed for different types of inhibitors. The substrate analogs have more extended interactions with PR subsites up to S5-S5', while the clinical inhibitors maximize the contacts within S2-S2'. Hydrophobic interactions are the major force for saquinavir binding since it was designed with enhanced hydrophobic groups based on substrate side-chains. In contrast, the new clinical inhibitor UIC-94017 was designed to mimic the hydrogen bonds between substrates and PR. UIC-94017 forms polar interactions with the PR main-chain atoms of Asp29/30, which have been proposed to be critical for its potency against resistant HIV. The mutants showed different structural and kinetic effects, depending on the inhibitor and location of the mutations. The observed structural changes were consistent with the relative inhibition data. Both PRI84V and PRI50V lost favorable hydrophobic interactions with inhibitor compared with PR. Similarly, in PRD30N the UIC-94017 had a water-mediated interaction with the side-chain of Asn30 rather than the direct interaction observed in PR. However, PRV82A compensated for the mutation by shifts of the backbone of Ala82. Furthermore, the complexes of PRV82A showed smaller shifts relative to PR, but more movement of the peptide analog, compared to complexes with clinical inhibitors. The structures suggest that substrate analogs have more flexibility than the drugs to accommodate the structural changes caused by mutation, which may explain how HIV can develop drug resistance while retaining the ability of PR to hydrolyze natural substrates.

Page generated in 0.0843 seconds