• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 12
  • 2
  • 1
  • 1
  • Tagged with
  • 105
  • 77
  • 77
  • 77
  • 77
  • 77
  • 77
  • 74
  • 72
  • 72
  • 26
  • 22
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A Tableau Algorithm for SROIQ under Infinitely Valued Gödel Semantics

Borgwardt, Stefan, Peñaloza, Rafael 20 June 2022 (has links)
Fuzzy description logics (FDLs) are knowledge representation formalisms capable of dealing with imprecise knowledge by allowing intermediate membership degrees in the interpretation of concepts and roles. One option for dealing with these intermediate degrees is to use the so-called Gödel semantics. Despite its apparent simplicity, developing reasoning techniques for expressive FDLs under this semantics is a hard task. We present a tableau algorithm for deciding consistency of a SROIQ ontology under Gödel semantics. This is the first algorithm that can handle the full expressivity of SROIQ as well as the full Gödel semantics.
72

Extending the Description Logic τEL(deg) with Acyclic TBoxes

Baader, Franz, Gil, Oliver Fernández 20 June 2022 (has links)
In a previous paper, we have introduced an extension of the lightweight Description Logic EL that allows us to define concepts in an approximate way. For this purpose, we have defined a graded membership function deg, which for each individual and concept yields a number in the interval [0; 1] expressing the degree to which the individual belongs to the concept. Threshold concepts C~t for ~ 2 ∈ {<, ≤, >, ≥} then collect all the individuals that belong to C with degree ~ t. We have then investigated the complexity of reasoning in the Description Logic τEL(deg), which is obtained from EL by adding such threshold concepts. In the present paper, we extend these results, which were obtained for reasoning without TBoxes, to the case of reasoning w.r.t. acyclic TBoxes. Surprisingly, this is not as easy as might have been expected. On the one hand, one must be quite careful to define acyclic TBoxes such that they still just introduce abbreviations for complex concepts, and thus can be unfolded. On the other hand, it turns out that, in contrast to the case of EL, adding acyclic TBoxes to τEL(deg) increases the complexity of reasoning by at least on level of the polynomial hierarchy.
73

Decidability and Complexity of Threshold Description Logics Induced by Concept Similarity Measures

Baader, Franz, Gil, Oliver Fernández 20 June 2022 (has links)
In a recent research paper, we have proposed an extension of the lightweight Description Logic (DL) EL in which concepts can be defined in an approximate way. To this purpose, the notion of a graded membership function m, which instead of a Boolean membership value 0 or 1 yields a membership degree from the interval [0; 1], was introduced. Threshold concepts can then, for example, require that an individual belongs to a concept C with degree at least 0:8. Reasoning in the threshold DL T EL(m) obtained this way of course depends on the employed graded membership function m. The paper defines a specific such function, called deg, and determines the exact complexity of reasoning in T EL(deg). In addition, it shows how concept similarity measures (CSMs) ~ satisfying certain properties can be used to define graded membership functions m~, but it does not investigate the complexity of reasoning in the induced threshold DLs T EL(m~). In the present paper, we start filling this gap. In particular, we show that computability of ~ implies decidability of T EL(m~), and we introduce a class of CSMs for which reasoning in the induced threshold DLs has the same complexity as in T EL(deg).
74

Gödel Description Logics

Borgwardt, Stefan, Distel, Felix, Peñaloza, Rafael 20 June 2022 (has links)
In the last few years there has been a large effort for analysing the computational properties of reasoning in fuzzy Description Logics. This has led to a number of papers studying the complexity of these logics, depending on their chosen semantics. Surprisingly, despite being arguably the simplest form of fuzzy semantics, not much is known about the complexity of reasoning in fuzzy DLs w.r.t. witnessed models over the Gödel t-norm. We show that in the logic G-IALC, reasoning cannot be restricted to finitely valued models in general. Despite this negative result, we also show that all the standard reasoning problems can be solved in this logic in exponential time, matching the complexity of reasoning in classical ALC.
75

Similarity Measures for Computing Relaxed Instances w.r.t. General EL-TBoxes

Ecke, Andreas, Turhan, Anni-Yasmin 20 June 2022 (has links)
The notion of concept similarity is central to several ontology tasks and can be employed to realize relaxed versions of classical reasoning services. In this paper we investigate the reasoning service of answering instance queries in a relaxed fashion, where the query concept is relaxed by means of a concept similarity measure (CSM). To this end we investigate CSMs that assess the similarity of EL-concepts defined w.r.t. a general EL-TBox. We derive such a family of CSMs from a family of similarity measures for finite interpretations and show in both cases that the resulting measures enjoy a collection of formal properties. These properties allow us to devise an algorithm for computing relaxed instances w.r.t. general EL-TBoxes, where users can specify the „appropriate“ notion of similarity by instanciating our CSM appropriately.
76

Conjunctive Query Answering in Rough EL

Peñaloza, Rafael, Thost, Veronika, Turhan, Anni-Yasmin 20 June 2022 (has links)
Rough Description Logics have recently been studied as a means for representing and reasoning with imprecise knowledge. Real-world applications need to exploit reasoning over such knowledge in an efficient way. We describe how the combined approach to query answering can be extended to the rough setting. In particular, we extend both the canonical model and the rewriting procedure such that rough queries over rough EL ontologies can be answered by considering this information alone.
77

On the Complexity of Axiom Pinpointing in Description Logics

Peñaloza, Rafael, Sertkaya, Barış 16 June 2022 (has links)
We investigate the computational complexity of axiom pinpointing in Description Logics, which is the task of finding minimal subsets of a knowledge base that have a given consequence. We consider the problems of enumerating such subsets with and without order, and show hardness results that already hold for the propositional Horn fragment, or for the Description Logic EL. We show complexity results for several other related decision and enumeration problems for these fragments that extend to more expressive logics. In particular we show that hardness of these problems depends not only on expressivity of the fragment but also on the shape of the axioms used.
78

Completion-based computation of least common subsumers with limited role-depth for EL and Prob-EL⁰¹

Peñaloza, Rafael, Turhan, Anni-Yasmin 16 June 2022 (has links)
The least common subsumer (lcs) w.r.t general EL-TBoxes does not need to exists in general due to cyclic axioms. In this report we present an algorithm for computing role-depth bounded EL-lcs based on the completion algorithm for EL. We extend this computation algorithm to a recently introduced probabilistic variant of EL: Prob-EL⁰¹.
79

Completion-based computation of most specific concepts with limited role-depth for EL and Prob-EL⁰¹

Peñaloza, Rafael, Turhan, Anni-Yasmin 16 June 2022 (has links)
In Description Logics the reasoning service most specific concept (msc) constructs a concept description that generalizes an ABox individual into a concept description. For the Description Logic EL the msc may not exist, if computed with respect to general EL-TBoxes or cyclic ABoxes. However, it is still possible to find a concept description that is the msc up to a fixed role-depth, i.e. with respect to a maximal nesting of quantifiers. In this report we present a practical approach for computing the roledepth bounded msc, based on the polynomial-time completion algorithm for EL. We extend these methods to Prob-EL⁰¹c , which is a probabilistic variant of EL. Together with the companion report [9] this report devises computation methods for the bottom-up construction of knowledge bases for EL and Prob-EL⁰¹c .
80

SAT Encoding of Unification in EL

Baader, Franz, Morawska, Barbara 16 June 2022 (has links)
The Description Logic EL is an inexpressive knowledge representation language, which nevertheless has recently drawn considerable attention in the knowledge representation and the ontology community since, on the one hand, important inference problems such as the subsumption problem are polynomial. On the other hand, EL is used to define large biomedical ontologies. Unification in Description Logics has been proposed as a novel inference service that can, for example, be used to detect redundancies in ontologies. In a recent paper, we have shown that unification in EL is NP-complete, and thus of a complexity that is considerably lower than in other Description Logics of comparably restricted expressive power. In this paper, we introduce a new NP-algorithm for solving unification problem in EL, which is based on a reduction to satisfiability in propositional logic (SAT). The advantage of this new algorithm is, on the one hand, that it allows us to employ highly optimized state of the art SAT solverswhen implementing an EL-unification algorithm. On the other hand, this reduction provides us with a proof of the fact that EL-unification is in NP that is much simpler than the one given in our previous paper on EL-unification.

Page generated in 0.0771 seconds