Spelling suggestions: "subject:"subsumption"" "subject:"subsumed""
71 |
Standard and Non-Standard Inferences in the Description Logic FL₀ Using Tree AutomataBaader, Franz, Gil, Oliver Fernández, Pensel, Maximilian 20 June 2022 (has links)
Although being quite inexpressive, the description logic (DL) FL₀, which provides only conjunction, value restriction and the top concept as concept constructors, has an intractable subsumption problem in the presence of terminologies (TBoxes): subsumption reasoning w.r.t. acyclic FL₀ TBoxes is coNP-complete, and becomes even ExpTime-complete in case general TBoxes are used. In the present paper, we use automata working on infinite trees to solve both standard and non-standard inferences in FL₀ w.r.t. general TBoxes. First, we give an alternative proof of the ExpTime upper bound for subsumption in FL₀ w.r.t. general TBoxes based on the use of looping tree automata. Second, we employ parity tree automata to tackle non-standard inference problems such as computing the least common subsumer and the difference of FL₀ concepts w.r.t. general TBoxes.
|
72 |
Infinitely Valued Gödel Semantics for Expressive Description LogicsBorgwardt, Stefan, Peñaloza, Rafael 20 June 2022 (has links)
Fuzzy Description Logics (FDLs) combine classical Description Logics with the semantics of Fuzzy Logics in order to represent and reason with vague knowledge. Most FDLs using truth values from the interval [0; 1] have been shown to be undecidable in the presence of a negation constructor and general concept inclusions. One exception are those FDLs whose semantics is based on the infinitely valued Gödel t-norm (G). We extend previous decidability results for the FDL G-ALC to deal with complex role inclusions, nominals, inverse roles, and qualified number restrictions. Our novel approach is based on a combination of the known crispification technique for finitely valued FDLs and an automata-based procedure for reasoning in G-ALC.
|
73 |
Model Exploration by Confidence with Completely Specified CounterexamplesBorchmann, Daniel 20 June 2022 (has links)
We present an extensions of our previous work on axiomatizing confident general concept inclusions in given finite interpretations. Within this extension we allow external experts to interactively provide counterexamples to general concept inclusions with otherwise enough confidence in the given data. This extensions allows us to distinguish between erroneous counterexamples in the data and rare, but valid counterexamples.
|
74 |
Matching with respect to general concept inclusions in the Description Logic ELBaader, Franz, Morawska, Barbara 20 June 2022 (has links)
Matching concept descriptions against concept patterns was introduced as a new inference task in Description Logics (DLs) almost 20 years ago, motivated by applications in the Classic system. For the DL EL, it was shown in 2000 that the matching problem is NP-complete. It then took almost 10 years before this NP-completeness result could be extended from matching to unification in EL. The next big challenge was then to further extend these results from matching and unification without a TBox to matching and unification w.r.t. a general TBox, i.e., a finite set of general concept inclusions. For unification, we could show some partial results for general TBoxes that satisfy a certain restriction on cyclic dependencies between concepts, but the general case is still open. For matching, we solve the general case in this paper: we show that matching in EL w.r.t. general TBoxes is NP-complete by introducing a goal-oriented matching algorithm that uses non-deterministic rules to transform a given matching problem into a solved form by a polynomial number of rule applications. We also investigate some tractable variants of the matching problem.
|
75 |
On the Complexity and Expressiveness of Description Logics with CountingBaader, Franz, De Bortoli, Filippo 20 June 2022 (has links)
Simple counting quantifiers that can be used to compare the number of role successors of an individual or the cardinality of a concept with a fixed natural number have been employed in Description Logics (DLs) for more than two decades under the respective names of number restrictions and cardinality restrictions on concepts. Recently, we have considerably extended the expressivity of such quantifiers by allowing to impose set and cardinality constraints formulated in the quantifier-free fragment of Boolean Algebra with Presburger Arithmetic (QFBAPA) on sets of role successors and concepts, respectively. We were able to prove that this extension does not increase the complexity of reasoning. In the present paper, we investigate the expressive power of the DLs obtained in this way, using appropriate bisimulation characterizations and 0–1 laws as tools to differentiate between the expressiveness of different logics. In particular, we show that, in contrast to most classical DLs, these logics are no longer expressible in first-order predicate logic (FOL), and we characterize their first-order fragments. In most of our previous work on DLs with QFBAPA-based set and cardinality constraints we have employed finiteness restrictions on interpretations to ensure that the obtained sets are finite, as required by the standard semantics for QFBAPA. Here we dispense with these restrictions to ease the comparison with classical DLs, where one usually considers arbitrary models rather than finite ones, easier. It turns out that doing so does not change the complexity of reasoning.
|
76 |
Concept Descriptions with Set Constraints and Cardinality ConstraintsBaader, Franz 20 June 2022 (has links)
We introduce a new description logic that extends the well-known logic ALCQ by allowing the statement of constraints on role successors that are more general than the qualified number restrictions of ALCQ. To formulate these constraints, we use the quantifier-free fragment of Boolean Algebra with Presburger Arithmetic (QFBAPA), in which one can express Boolean combinations of set constraints and numerical constraints on the cardinalities of sets. Though our new logic is considerably more expressive than ALCQ, we are able to show that the complexity of reasoning in it is the same as in ALCQ, both without and with TBoxes. / The first version of this report was put online on April 6, 2017. The current version, containing more information on related
work, was put online on July 13, 2017.
This is an extended version of a paper published in the proceedings of FroCoS 2017.
|
Page generated in 0.0751 seconds