• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DESIGN, SYNTHESIS, AND PHARMACOLOGICAL EVALUATION OF A SERIES OF NOVEL, GUANIDINE AND AMIDINE-CONTAINING NEONICOTINOID-LIKE ANALOGS OF NICOTINE: SUBTYPE-SELECTIVE INTERACTIONS AT NEURONAL NICOTINIC-ACETYLCHOLINE RECEPTOR.

Haubner, Aaron Joseph 01 January 2008 (has links)
The current project examined the ability of a novel series of guandine and amidine-containing nicotine analogs to interact with several native and recombinantlyexpressed mammalian neuronal nicotinic-acetylcholine receptor (nAChR) subtypes. Rational drug design methods and parallel organic synthesis was used to generate a library of guanidine-containing nicotine (NIC) analogs (AH compounds). A smaller series of amidine-containing nicotine analogs (JC compounds) were also synthesized. In total, >150 compounds were examined. Compounds were first assayed for affinity in a high-throughput [3H]epibatidine radioligand-binding screen. Lead compounds were evaluated in subtype-selective binding experiments to probe for affinity at the α4β2* and α7* neuronal nAChRs. Several compounds were identified which possess affinity and selectivity for the α4β2* subtype [AH-132 (Ki=27nm) and JC-3-9 (Ki=11nM)]. Schild analysis of binding suggests a complex one-site binding interaction at the desensitized high-affinity nAChR. Whole-cell functional fluorescence (FLIPR) assays revealed mixed subtype pharmacology. AH-compounds were identified which act as activators and inhibitors at nAChR subtypes, while lead JC-compounds were found which possess full agonist activity at α4β2* and α3β4* subtypes. Compounds were identified as partial agonists, full agonists and inhibitors of multiple nAChR subtypes. Several SAR-based, ligand-receptor pharmacophore models were developed to guide future ligand design. Second-generation lead compounds were identified.

Page generated in 0.1045 seconds