• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variation in nectar composition: The influence of nectar quality on Monarch success

Arnold, Paige Marie 21 July 2016 (has links)
No description available.
2

Food quality, fasting periods and temperature stress : effects of energy challenges on the feeding patterns of avian nectarivores

Kohler, Angela 12 October 2009 (has links)
The small size of nectarivorous birds is associated with high mass-specific metabolic rates and energetic lifestyles. Their energy balance is likely to be strongly influenced by environmental factors. Firstly, nectar varies in sugar concentration between different food plants and birds must adjust their consumption to maintain a constant energy intake. Secondly, unfavourable weather conditions, such as storms and heavy rains, may prevent birds from feeding, and they must increase their energy intake to compensate for the loss in foraging time. Low ambient temperature, as a third energetic challenge, results in higher energy demands for thermoregulation, which leads to increased food intake. However, these compensatory feeding responses may be constrained by physiological limitations to nectar ingestion, digestion and osmoregulatory processes. My research focused on the behavioural and physiological responses of captive sunbirds (Nectariniidae) and honeyeaters (Meliphagidae) to energetic challenges, namely variations in nectar quality and availability and in ambient temperature. For sunbirds, I also investigated on a novel short-term scale how feeding patterns are adjusted in order to compensate for alterations in energy intake or requirements. Feeding events were recorded using a photodetection system, and body mass was monitored continuously by connecting the perches to electronic balances, interfaced to a computer. Whitebellied sunbirds (Cinnyris talatala) were fed various nectar sugar concentrations. Their feeding durations were found to provide an estimate of meal size on all food concentrations. When exposed to a decrease in sugar concentration, birds generally demonstrated an increased feeding frequency and food intake within 10 min. The number and duration of meals increased in the first few minutes after return of a more concentrated diet. When whitebellied sunbirds and brown honeyeaters (Lichmera indistincta) were exposed to a 2 h fasting period during the day, they increased their nectar intake and energy accumulation after the fast. Sunbirds achieved this by increasing meal size but not meal frequency. However, both species weighed less in the evening following the fast than the previous evening, indicating that the compensation for lost foraging time was incomplete. During acute cold exposure, whitebellied sunbirds, amethyst sunbirds (Chalcomitra amethystina) and brown honeyeaters increased their nectar intake, but lost body mass irrespective of nectar sugar concentration. Honeyeaters ingested more food at subsequent cold exposure, suggesting physiological adaptation to high feeding rates. A chemical reactor model of digestive capacity, which assumes sucrose hydrolysis to be the limiting step in nectar digestion, accurately predicted maximal food intake in honeyeaters, but mostly underestimated it in sunbirds. Sugar assimilation efficiency was higher than 99% in whitebellied sunbirds and brown honeyeaters. Lastly, licking frequencies and tongue loads of whitebellied and amethyst sunbirds were investigated. In both species, tongue lick duration increased, and licking frequency and consumption per lick decreased, with increasing nectar concentration. Birds did not adjust their licking behaviour after a fasting period. In conclusion, the response to varied energy challenges is shaped by both compensatory feeding and physiological constraints. Although unrelated, sunbirds and honeyeaters showed convergence in their responses, probably due to their similar nectarfeeding lifestyle. / Thesis (PhD)--University of Pretoria, 2009. / Zoology and Entomology / unrestricted
3

Ecological correlates of bird damage in a Canterbury vineyard

Watkins, Nigel G. January 1999 (has links)
Birds are a major pest in vineyards both in New Zealand and overseas. There is a need for new behavioural research on birds' foraging habits and feeding preferences in vineyards, as much of the literature to date is anecdotal. Research on cues to birds' feeding will provide a basis on which new deterrent and control strategies can be devised. Spatial-and temporal bird damage in a small vineyard block was mapped to find if damage was correlated with grape maturity and environmental factors. Vineyard and field observations of bird behaviour using video technology combined with preference experiments aimed to establish the relative roles of grape sugar concentration and colour in avian selection. Proximity of vineyards to bird roosts affects damage levels, regardless of differing maturity between locations. The rate of damage tends to increase exponentially once grape maturity has passed a threshold of 13 °Brix. Bunches positioned closest to the ground receive more damage if blackbirds or song thrushes are the predominant pests. Both sugar concentration and grape colour were found to affect birds' feeding preference, but the importance of the two factors varied between years. Black and green grape varieties were differentially preferred by blackbirds (Turdus merula) and song thrushes (Turdus philomelos) while silvereyes (Zosterops lateralis) appeared to have no strong colour preference. It was apparent that there were other, not assessed, grape factors that also affect selection. In small unprotected vineyards that are adjacent to bird roosts the entire grape crop can be taken by bird pests. Besides removing the roosts, which can be beneficial shelterbelts in regions exposed to high winds, growers currently may have no alternative other than to use exclusion netting to keep crops intact. The differential preferences between bird species for variety characteristics suggest that any new deterrents and other strategies to deflect birds from grape crops may need to be species-specific.

Page generated in 0.1476 seconds