• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sugar sensing and regulation of conidiation in Neurospora crassa

Xie, Xin 15 November 2004 (has links)
The orange bread mold Neurospora crassa is a useful model for the study of filamentous fungi. One of the asexual reproduction cycles in N. crassa, macroconidiation, can be induced by several environmental cues, including glucose starvation. The rco-3 gene is a regulator of sugar transport and macroconidiation in N. crassa and was proposed to encode a sugar sensor (Madi et al., 1997). To identify genes that are functionally related to RCO-3, three distinct suppressors of the sorbose resistance phenotype of rco-3 were isolated and characterized. The dgr-1 mutant phenotypically resembles rco-3 and may be part of the rco-3 signaling pathway. Epistatic relationship among rco-3, dgr-1 and the suppressors were carried out by analyzing rco-3; dgr-1 and sup; dgr-1 double mutants. These analyses indicate that rco-3 is epistatic to dgr-1. A cDNA microarray containing 1363 N. crassa genes was generated to examine the transcriptional response of wild type cells grown in the presence of glucose or starved for glucose for two hours. Comparing N. crassa profiling data with the published diauxic shift data from S. cerevisiae (DeRisi et al., 1997) revealed that S. cerevisiae and N. crassa share a similar, but not identical, transcriptional response pattern for genes belonging to central carbon metabolism. The microarray results indicate that N. crassa utilizes glucose through fermentation and respiration simultaneously in aerobic culture, a finding that is consistent with previous measurements of ethanol production and enzyme activities in N. crassa. The same microarray was used to examine the transcriptional response to glucose status in rco-3 and dgr-1 mutants. The two mutants display similar expression patterns for most of the genes on the microarray supporting a close functional relationship between them. In addition, I identified a high affinity glucose transport gene in N. crassa, whose transcription is under the control of glucose, rco-3 and dgr-1.
2

Marcadores bioquímicos associados ao metabolismo de carboidratos  durante a embriogênese zigótica e somática de Araucaria angustifolia (Bertol.) Kuntze / Biochemical markers associated with carbohydrate metabolism during the zygotic and somatic embryogenesis of Araucaria angustifolia (Bertol.) Kuntze

Navarro, Bruno Viana 17 August 2018 (has links)
Araucaria angustifolia é uma espécie de conífera native do Brasil, com importância econômica, social e ecológica. Devido a sua intensa exploração ao longo dos anos, atualmente a espécie cobre apenas 2% do sua área florestal original. Neste sistema, a embriogênese somática pode ser integrada em programas de melhoramento e conservação. Além disso, a similaridade entre a embriogênese zigótica e somática tem sido usada para desenvolver estudos baseados em biologia de sistemas, a fim de otimizar o desenvolvimento do embrião somático in vitro, bem como para gerar uma melhor compreensão dos eventos moleculares, bioquímicos e fisiológicos que modulam a formação do embrião. O metabolismo dos carboidratos é uma rota central que desempenha um papel importante durante o crescimento e desenvolvimento das plantas. Além de seu papel essencial como substrato no metabolismo de carbono e energia, os açúcares também desempenham papéis importantes como moléculas sinalizadoras. Para A. angustifolia, os bancos de dados de transcriptoma e proteoma identificaram o metabolismo de carboidratos como uma via importante na modulação do processo embriogênico. Assim, o objetivo principal deste trabalho foi estudar o metabolismo de carboidratos durante três estádios da embriogênese zigótica (globular, cotiledonar e maduro) e nas fases de proliferação e maturação de linhagens celulares embriogênicas com potencial embriogênico contrastante (responsiva e bloqueada). Para tanto, foram analisados os perfis de carboidratos não estruturais e monossacarídeos de parede celular, bem como a identificação e caracterização dos principais genes e proteínas envolvidos nas respostas mediadas por carboidratos, na homeostase de comunicação célula-a-célula e na modulação do metabolismo de sacarose, amido, rafinose e parede celular. Adicionalmente, um banco de dados de metaboloma foi gerado e integrado ao transcriptoma e proteoma de A. angustifolia através de redes de co-expressão, em uma abordagem de biologia de sistema. As respostas mediadas por carboidratos que ocorrem durante a embriogênese somática de A. angustifolia se assemelham às que ocorrem nos estádios iniciais da embriogênese zigótica. Além disso, o acúmulo de sacarose e amido durante o desenvolvimento embrionário foi modulado pelas respostas de detecção de açúcar e sinalização, destacando este processo como uma característica importante que direciona a responsividade das linhas celulares embriogênicas. Associado a isso, a seletividade mediada pela comunicação de plasmodesmas e transporte vesicular na linhagem celular responsiva, apareceu como importante controle de diferenciação e desenvolvimento de tipos celulares. Embora o mecanismo completo da embriogênese somática de A. angustifolia não tenha sido completamente elucidado, nossas análises sobre as alterações metabólicas (metaboloma) durante a embriogênese zigótica e somática indicam que as redes regulatórias envolvidas no crescimento e desenvolvimento estão altamente interconectadas aos níveis de metabólito, proteína e transcrito, mostrando altas correlações entre alvos envolvidos no metabolismo de carboidratos. Os resultados obtidos fornecem informações relevantes e inéditas sobre o metabolismo dos carboidratos na embriogênese zigótica e somática de A. angustifolia, bem como fornecem subsídios para a otimização das condições in vitro para o desenvolvimento de embriões somáticos. / Araucaria angustifolia is a native conifer species of Brazil, that with economic, social and ecological importance. Due to its intense exploitation, the species cover only 2% of its original forest area. In this system, somatic embryogenesis may be integrated into breeding and conservation programs. Beside this, the similarity between zygotic and somatic embryogenesis have been used to develop studies based on system biology, in order to optimize the in vitro somatic embryo development, as well as to generate a better understanding of molecular, biochemical and physiological events that modulate the embryogenesis. Carbohydrates metabolism is a central route that plays an important role during plant growth and development. In addition to its essential role as a substrate in carbon and energy metabolism, sugars also play important roles as signal molecules. For A. angustifolia, transcriptome and proteome databases identified carbohydrates metabolism as an important pathway in the modulation of embryogenic process. Thus, the main objective of this work was to study the carbohydrates metabolism during three zygotic embryogenesis stages (globular, cotyledonal and mature) and in proliferation and maturation phases of embryogenic cell lines with contrasting embryogenic potential (responsive and blocked). To achieve this purpose, the profiles of non-structural carbohydrates and cell wall monosaccharides were generated, as well as the identification and characterization of the main genes and proteins involved in carbohydrate-mediated responses, cell-to-cell communication homeostasis and modulation of sucrose, starch, raffinose and cell wall metabolism. Additionally, a metabolome database was generated and integrated with A. angustifolia transcriptome and proteome through co-expression networks in a system biology approach. The carbohydrate-mediated responses that occur during A. angustifolia somatic embryogenesis resembled those occurring in the early stages of zygotic embryogenesis, where the main responses that affect the targeting of the tissue differentiation of the seed occur. Beside this, sucrose and starch accumulation during embryo development were modulated by sugar sensing and signaling responses, highlighting this process as an important trait that directs the responsiveness of embryogenic cell lines. Associated to this, the selectivity mediated by plasmodesmata communication and vesicular transport in the responsive cell line, appeared as an important control of cell types differentiation and development. Even though the complete mechanism of A. angustifolia somatic embryogenesis has not been completely elucidated, our analyses about the metabolic changes (metabolome) during zygotic and somatic embryogenesis indicate that the regulatory networks involved in growth and development are highly inter-connected at the metabolite, protein and transcript levels, showing high correlations between targets involved in carbohydrate metabolism. The results obtained provide relevant and inedited information about the carbohydrates metabolism in A. angustifolia zygotic and somatic embryogenesis, as well as provide news subsidies for optimization of in vitro conditions for somatic embryos development.
3

Development of Nanostructured Core-Shell Materials for Sensing of Sugars in Vivo

El Khoury, Jouliana M. 23 September 2005 (has links)
No description available.
4

Connections Between Inositol Phosphate Signaling and Energy Responses in Plants

Williams, Sarah Phoebe 19 November 2015 (has links)
The ability for an organism to sense and respond appropriately to its environment is often critical for survival. One mechanism for this is the inositol phosphate (InsP) signaling pathway. This work focuses on the role of InsP signaling in maintaining energy homeostasis in the plant. InsP signaling is connected to energy sensing in plants via a protein complex containing both the inositol polyphosphate 5-phosphatases (5PTase13) and the Sucrose non-Fermenting Related Kinase 1 (SnRK1). SnRK1 is considered a fuel gauge for the plant cell that senses energy status and reprograms growth appropriately. While the SnRK1.1 gene has been well studied, the role other SnRK1 isoforms play in energy or stress signaling is less well understood. This work examined the role of 3 SnRK1 isoforms in energy signaling, finding that SnRK1.1 and SnRK1.2 are regulated and function differently in Arabidopsis. The second part of this work focuses on the inositol pyrophosphates, which are a novel group of InsP signaling molecules containing diphosphate or triphosphate chains (i.e. PPx) attached to the inositol ring. These PPx-InsPs are emerging as critical players in the integration of cellular metabolism and stress signaling in non-plant eukaryotes. Most eukaryotes synthesize the precursor molecule, myo-inositol (1,2,3,4,5,6)-hexakisphosphate (InsP6), which can serve as a signaling molecule or as storage compound of inositol, phosphorus, and minerals. Even though plants produce huge amounts of InsP6 in seeds, almost no attention has been paid to whether PPx-InsPs exist in plants, and if so, what roles these molecules play. This work details the presence of PPx-InsPs in plants and delineates two Arabidopsis gene products (AtVip1 and AtVip2) capable of PP-InsP5 synthesis. We further examined the subcellular location of enzymes connected to PPx-InsP synthesis as well as the developmental and tissue specific patterns of expression of the genes that encode these enzymes. We localized the enzymes involved in InsP6 and PPx-InsP production to the nucleus and endoplasmic reticulum (ER). The subcellular compartmentalization of PPx-InsP signaling may be unique to plants. An increased understanding in the pathways involved in energy sensing and metabolic response may reveal novel strategies to improve crops for yield and viability in the future. / Ph. D.

Page generated in 0.084 seconds