• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Suivi temps-réel d'objets 3D pour la réalité augmentée

Masson, Lucie 09 December 2005 (has links) (PDF)
Ce mémoire de thèse a pour sujet le suivi temps réel d'objets en trois dimensions, dans le but de réaliser des applications de réalité augmentée. En effet la réalité augmentée nécessite des algorithmes de suivi stables et précis. Si l'on désire en plus que le suivi soit effectué en temps réel vidéo, il faut alors trouver des compromis entre précision des résultats et vitesse de traitement. Ce mémoire contient la description des trois algorithmes de suivi développés durant cette thèse. Ils illustrent le cheminement suivi par nos travaux durant ces trois années, c'est-à-dire le suivi d'objets de plus en plus complexes, d'abord planaires, puis simples objets 3D, et enfin objets 3D complexes de modèle 3D inconnu. Le premier algorithme permet de suivre des objets planaires peu texturés. Il s'agit d'une extension d'un algorithme de suivi de plans efficace et rapide, basé sur l'utilisation d'informations de texture, auquel nous avons ajouté une composante de suivi de contour afin de pouvoir l'utiliser sur un ensemble plus vaste de motifs. Une fois ce travail sur le suivi planaire effectué, nous avons adapté l'algorithme de suivi de textures au suivi d'objets en trois dimensions. En utilisant de multiples occurrences de cet algorithme, réparties sur la surface de l'objet à suivre, couplées à un algorithme itératif d'estimation de pose, nous sommes parvenus à suivre en temps réel des objets simples effectuant des translations et des rotations à 360 degrés. Cet algorithme étant limité par le fait qu'il nous faut connaître un modèle 3D de l'objet à suivre, nous avons ensuite cherché à réaliser un algorithme permettant, lors d'une phase d'apprentissage, de générer un modèle statistique de l'objet à partir de vues clefs 2D. Basé sur le même algorithme de suivi de texture que précédemment, cet algorithme ne détermine pas la pose 3D de l'objet suivi mais décrit sa position comme étant la déformation d'une grille 2D.

Page generated in 0.0825 seconds